Spin in the quantum Hall effect: OPNMR studies of skyrmions and composite fermions
Dementyev, Anatoly E

ProQuest Dissertations and Theses; 2004; ProQuest
pg. na

Spin in the Quantum Hall Effect:
OPNMR Studies of Skyrmions and Composite

Fermions

A Dissertation
Presented to the Faculty of the Graduate School
of
Yale University
in Candidacy for the Degree of
Doctor of Philosophy

by
Anatoly E. Dementyev

Dissertation Director: Professor Sean E. Barrett

May 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 3125181

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 3125181
Copyright 2004 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT

Spin in the Quantum Hall Effect:
OPNMR Studies of Skyrmions and Composite Fermions

Anatoly E. Dementyev
2004

In this thesis we report optically pumped nuclear magnetic resonance (OPNMR)
measurements of the "'Ga spectra and the nuclear spin-lattice relaxation rate 1/ T}
carried out in n-doped GaAs/Aly;GaggeAs multiple quantum well (MQW) samples.

As we lower the temperature down to T =~ 0.3 K, a “tilted plateau” emerges
in the Knight shift data near the integer quantum Hall ground state v=1. This
“tilted plateau” is a novel experimental signature of quasiparticle localization. The
dependence of the spectra on both T and v suggests that the localization is a collective
process. The frozen limit spectra appear to rule out a 2D lattice of conventional
Skyrmions.

Our OPNMR measurements of the Knight shift and the nuclear spin-lattice relax-
ation rate 1/7T; at Landau level filling factor » = 1/2 provide new constraints on the
theoretical description of the v = 1/2 state. We compare the data with predictions of
a weakly-interacting composite fermion model and the extended Hamiltonian theory.

The last chapter has a different focus: unexpected NMR phenomena observed in
a dilute dipolar solid. We report ?*Si NMR measurements of Carr-Purcell-Meiboom-
Gill (CPMG) spin echoes obtained in doped silicon powders. The CPMG echoes have
several unusual differences from ordinary Hahn echoes, including even-odd echo asym-
metry, effects evoking spin-locking and stimulated echoes, and longer “coherence”
times. The surprising phenomena appear to be consequences of the homonuclear
dipolar coupling, and are therefore relevant to physical implementations of quantum

computation.
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Chapter 1

The Quantum Hall Effect

1.1 Introduction

Since its discovery more than 20 years ago, the quantum Hall effect (QHE) has
been one of the most studied topics in condensed matter physics. Two Nobel Prizes,
awarded for the ground-breaking discoveries in this area, signify the importance of
the research in this branch of condensed matter physics. The theoretical framework of
the QHE has stimulated developments in other branches of physics (e.g. Elementary
Particle Theory) as well.

Discovered by Klaus von Klitzing [1] in 1980, the integer quantum Hall effect
(IQHE) manifests itself as the vanishing longitudinal resistivity in a two-dimensional

electron system (2DES) at strong perpendicular magnetic fields:

Pez =Py —0 as T —=0 (1.1)
and the quantization of the Hall resistivity:
_Lha (1.2)

where v is an integer, e is the electron charge, and h is Planck’s constant. This quan-

tization is extremely precise (better than 107®) and is observed in a wide variety of
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samples with different geometry, semiconductor material types and carrier mobilities

[2, 3]. This implies the fundamental origin of IQHE.

1.2 Basics of Transport Measurements in 2DES

Conductivity and resistivity tensors:

ag= and

Oyz  Oyy Pyz  Pyy

(1.3)

(RS
I

are defined by

j=¢E and E=pj, (1.4)

where j is the current density and E is the electric field. Since p is the inverse of o,

we have:
1 Oz —Uzy
L= 7 o7 ! (1.5)
- Oza awy Oy Ou
where we used Onsager relations: 0y, = —04y and 04, = 0yy. Note that for the QHE

state (Eq.1.1) the diagonal elements of both conductivity and resistivity tensors are
Zero.

The simple Drude model analysis for DC conductivity in metals gives [4]:

B 2

p= o e ., where po = net , (1.6)
B -£Z Po m

B is the applied magnetic field, n is the conduction electron density, c¢ is the speed
of light, 7 is the relaxation time and m is the electron mass. If there is a current j,

along x axis then there will be an electric field along -y axis:

B .
E,j=——j,. (1.7)

nec

This is the well-known classical Hall effect. The classical Hall resistance pg, is linearly
proportional to the magnetic field while its quantum counterpart exhibits plateaus as

a function of the field.
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Pxy [h/e?]

Pxx

Figure 1.1: Integer and fractional quantum Hall effect transport data. The dashed
diagonal line represents the classical Hall resistivity and the solid curve with step-like
structure (plateaus) — the experimental results. Diagonal resistivity p,.(B) is drawn
on a separate scale, with regions of p,; =0 (corresponding to the plateaus in p,y(B))
and sharp spikes between some of them. The filling factors corresponding to each
fraction are marked with arrows. Adapted from [5].
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1.3 Quantum Description of Two-Dimensional
Electron Systems

A clean, high electron mobility 2DES is a key element for the QHE. Such systems
are usually created in Metal-Oxide-Semiconductor inversion layers and semiconductor
heterojunctions or quantum wells [6, 7]. The highest electron mobility is achieved in
GaAs quantum wells which are grown one atomic layer at a time by Molecular Beam
Epitaxy (MBE). A 2DES is spatially separated from ionized donors by modulation
doping.

Since the size of the quantum well is very small (~3OOA), the perpendicular motion
of electrons is quantized with the energy level spacing of order ~100 K. If other energy
scales involved are much smaller than this level spacing, electrons will condense into
the lowest energy level, so that the system is effectively two-dimensional.

The Hamiltonian for spinless non-interacting electrons in the magnetic field B || z

2
H=— (%{A) , (18)

1s:

- 2mr \d
where A is the magnetic vector potential and m* is the effective electron mass. If we

choose the Landau gauge: A, =Bz, A, =0, we can separate the variables:

Y(z,y) = exp (iky y) x(z) , (1.9)

and substituting Eq. 1.9 into HE = ¥ FE, we have:

2m* m*
X'(@) + 27 [B = 5 wllo = 2] x(z) = 0 (1.10)
: eB
with we=-—— and =k, (1.11)
he 3
lo = <é——~ is the magnetic length . (1.12)
4
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The Eq. 1.10 is identical to the Schrodinger equation for a harmonic oscillator with an

equilibrium position at zo. The eigenvalues of the Hamiltonian in Eq. 1.8 are Landau

levels, given by:

Ey = huw (N + %) . (1.13)

These levels are macroscopically degenerate since the energy is independent of k,.
Assuming periodic boundary condition along the y direction and taking into account

Eq.1.11, the degeneracy can be easily calculated:

A
=— 1.14
Y TP I (1.14)
where A is the sample area. The ratio of electron number to the Landau level degen-

eracy is called the Landau level filling factor:

2 nhe n
— = - 1.1
v = 2xlin B = na’ (1.15)

where n is the electron density and ng = B/®, is the density of magnetic flux quanta
penetrating the sample.
If we take into account the electron spin then each Landau level will be split into

two levels separated by the Zeeman energy.

1.4 The Integer Quantum Hall Effect

In order to calculate the Hall resistivity we have to add the potential energy due

to a uniform electric field £ to the Hamiltonian in Eq. 1.8:

1 1) € 2
H= —V+-A)| +eEx. (1.16)
2m* \ 1 c

For this problem, the eigenvalues depend upon k,:

1 , 1 .,/ E\?
By = hue (N+5 ) = eBk3 = 5 m (C—B-) . (1.17)
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The wave packet group velocity is given by:

8EN €El(2) E
_ _ L _ _ & 1.18
Ohk, B ‘B (1.18)

v

The sheet current density is then j, = —nev and the Hall resistivity is the same as in

the classical case:

B 1h
= = - - 1.19
Py = fec v e? ( )

Although for systems with completely filled Landau levels the above formula gives us
Eq.1.2, it doesn’t reproduce the plateaus seen in the experiments. In order to explain
the IQHE we need to take into account disorder.

In the presence of disorder, Landau levels will broaden in energy. For high mag-
netic fields and smooth random potential, the eigenfunctions will follow contour lines
of constant energy on the random potential surface. According to the percolation
model [2, 3], almost all the states will be localized. Only the states with energies
close to the original Landau levels will remain extended.

Now, we can vary the Fermi energy continuously by changing the electron density
or the magnetic field. When the states at the Fermi level are localized, the system
is dissipationless, pge = 03z = 0 at T = 0. A variation in the Fermi energy will
not change the conductivity tensor as long as the Fermi level doesn’t encounter any
extended states: o,, = 0 and Aoy, = 0. While the longitudinal conductivity is
determined by the states at the Fermi level, the Hall conductivity is due to all ex-
tended states below the Fermi level. This explains plateaus in the Hall conductivity
(or resistivity) dependence on the filling factor. When the states at the Fermi level
are extended, the longitudinal conductivity becomes finite and the Hall conductivity
changes from one plateau to another. But why is py, on plateaus given precisely by
Eq.1.2 7

Laughlin [8] gave a general explanation to this precise quantization in his ingenious

Gedankenezperiment. Let us consider a geometry where a 2DES is bent to form a
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Figure 1.2: Sample geometry in Laughlin’s Gedankenezperiment. A 2DES is bent to
form a ribbon and an external magnetic field B is perpendicular to the surface. There
is also a magnetic flux confined to the interior of the solenoid magnet threading the
loop. '
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ribbon with circumference L, and a magnetic field B is always perpendicular to the
surface (see Fig.1.2). We also assume that there a magnetic flux ® confined to the
interior of the solenoid magnet threading the loop. The current in the loop can be

expressed as:

ﬁq_aq@_ 0g¢  OU  coU

I=% =006~ ‘96~ ‘36 LoA’

(1.20)

where U is the total electronic energy of the system and A is the uniform vector
potential pointing around the loop. If the state is localized, then we can get rid of
the magnetic flux by the gauge transformation, which multiplies the wavefunction by
exp(teAy/hic), where y is the coordinate around the loop. Which means that localized
states do not carry current. For extended states this transformation is not allowed
since the wavefunction will not be single-valued anymore unless A = (nhc/eL), which
corresponds to an integer number of flux quanta &3 = hc/e.

For non-interacting electrons, introducing a uniform vector potential A will shift
the center positions of wavefunctions in the x direction by —A/B. When the magnetic
flux through the loop is exactly equal to the flux quantum ®,, the eigenstates of the
system should map into themselves at ® = 0 (k, — k, + 1) because of the gauge
invariance, so that the net result is an electron transfer from one edge to the other

for each Landau level. Then, for n completely filled Landau levels, we have:

oU —neV  ne? 1h
I=—cgg =3, =% ad =005,

(1.21)

where V' is the potential difference between the edges.

The above formulas will still hold in the case of weakly disordered 2DES with the
Fermi energy in a mobility gap (i.e., the states at the Fermi energy are localized).
Since the gauge invariance is an exact symmetry, the only effect of the addition of
a flux quantum &, will be an excitation of the original system. In this case, it will
result in the transfer of an electron from one edge to another for each Landau band

filled above extended states in its center.
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1.5 The Fractional Quantum Hall Effect

It came as a complete surprise when D. Tsui and H. Stérmer [9] discovered that
in very high mobility samples, in addition to plateaus given by Eq. 1.2, there were

also plateaus at some fractional filling factors:

1h

Pay = (1.22)

ver’
where v = 2 and m is an odd integer (with the exception of the state at v = 2).
This effect is named accordingly as the fractional quantum Hall effect (FQHE) and
the most pronounced plateau is observed at v = %

The essential point in the explanation of the IQHE is the existence of energy
gaps in the density of states. For integer filling factors, those gaps are due to the
quantization of the kinetic energy in the magnetic field. Since there are no gaps for
states with fractional filling factors in the independent electron picture, the electron-
electron interaction plays a major role in the theory of the FQHE.

Another amazing consequence of Eq.1.22 is the existence of fractionally charged

quasiparticles. To show that, let us imagine piercing 2DES with an infinitely thin

solenoid and adiabatically increasing the magnetic flux through it to ®,. Suppose,

that py, = 0 and p,y = %e% The change in the flux will create azimuthal electric
field E,:
1dd
2rrE, = —— — 1.23
nr ¥ c dt ? ( )

which will result in the radial current J,, so that the charge transferred to the position

of the magnetic flux is given by:

Do
CPzxy

Q= —/27rrert = =ve. (1.24)

Because of the existence of an excitation gap and the gauge invariance, the state after

the insertion of ®, is an eigenstate of the original Hamiltonian.
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In his seminal paper, Laughlin [10] proposed the following wavefunction for the

fully spin-polarized v = % ground state:

N
Ym(21,. .. 28) = H(zj — Z) exp[ 4l2 Z |zl|2} (1.25)
i<k

where z; =z, +1y; are the 4% electron coordinates. This trial wavefunction proved
to be very successful in explaining v = 7—711— states. It confines electrons to the lowest
Landau level due to the analyticity of the Jastrow prefactor [[(z; — 2;)™. The kinetic
energy is fixed in the lowest Landau level and we only need to minimize the Coulomb
interaction. The Laughlin wavefunction accomplishes that by placing m-fold zeroes in
¥m(2) at the locations of other (j # i) electrons, thus keeping electrons far apart from
each other. Each zero in the wavefunction is the vortex corresponding to 27 phase
change when electron is moved along a closed loop around it. If we move that electron
around a large closed loop enclosing all other electrons while keeping them fixed, the
wavefunction will acquire an Aharonov-Bohm phase change of A¢ = 2%%0 = 27 Ng,
where @ is the magnetic flux through the loop. Since we have m-fold zeroes at each
fixed electron, the filling factor is given by: v = e = oo
For filling factors slightly away from v = %, there is no way to construct a
wavefunction with exactly m vortices attached to electrons. We can create a quasihole
at point 2y by the adiabatic insertion of the magnetic flux quantum described above.
This will create a vortex, since the wavefunction will acquire a phase of 27 if any

electron is moved around it. Laughlin [10] suggested the following natural choice for

the quasihole wavefunction:

N N N
(0 = TG =) TG = 0" exp |~ S 1] (1.26

Using plasma analogy [10], it can be shown that the fractional charge £ is localized
at point zy. It costs a finite amount of energy to produce quasiparticles such as a

quasihole described above. This suggests that there is a gap in the density of states

10
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above the v = % ground state. Numerical studies with small systems showed a nearly
perfect overlap with the Laughlin wavefunction and verified the existence of the gap
(2, 3].

Plateaus centered at the fractional filling factors v = % can be explained by the
localization of quasiparticles, similarly to the case of the IQHE. As the concentration
of quasiparticles increases, they can form a new FQHE ground state to minimize their
interaction. This “daughter” state can produce quasiparticles of its own which will
localize and form a plateau in p,, again. Using this hierarchy approach, FQHE states

other than v = X can be explained [11].

1.6 Composite Fermions

The ideas of composite particles were developed over several years of theoretical
studies of the QHE [12, 13, 14, 15, 16, 17, 18, 19, 20, 21] and high T superconductivity
[22]. Jain proposed that an interacting system exhibiting the FQHE could be mapped
into a nearly independent system of composite fermions (CF) exhibiting the IQHE
(14, 15, 23]. He noticed that we can rewrite the Laughlin wavefunction in the following

form:
N

Ym(21y...,28) = H(z] —2)™ Y x1(21, ..., 28) (1.27)
i<k
where x; is the wavefunction for a completely filled lowest Landau level:

N

W) = 1[G = 1) exp -1 ] (129
i<k
The factor [1(z; — zx)™ " in Eq.1.27 attaches m — 1 vortices to each electron. An

electron carrying an even number (m — 1) of vortices is called a composite fermion.

Jain’s trial wavefunction for v = %fﬁ is given by:
2ps+1 =P H X” ? (1'29)
i<k
11
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where ¥, is the wavefunction for p completely filled Landau levels and P is the lowest
Landau level projection operator. In this picture the FQHE state at v = ﬂ;% will
be mapped into the v* = p IQHE state of composite fermions with 2s attached
vortices. If we move a composite fermion around a large loop enclosing N electrons,
the wavefunction will acquire a phase of A¢ = 27(Ng — 2sN), since 2s vortices
contribute a phase of —272s per each electron enclosed in the loop. This phase

change can be expressed as an Aharonov-Bohm phase A¢ = 271%; in the effective

magnetic field B* sensed by a composite fermion:
B* =B —2s®¢n , (1.30)

which corresponds to a composite fermions filling factor v* :

" n<I>0 ’I’Lq)o 1
Vv = =

B~ B-2sdm L1—-2s

. (1.31)

A different approach to introduce a composite fermion uses the Chern-Simons

gauge transformation [24]:

(2 — 2)*
o= [[ 2= s, A—A-—acs. (1.32)
ok 125 = 2l

The Chern-Simons magnetic field Bgg(r) associated with the vector potential acg is
given by:
Bes(r) =V x agg(r) = 2s@on(r) , (1.33)

where n(r) = X, 0(r — r;) is the local particle density. In essence, Chern-Simons
transformations can be thought of as an attachment of 2s flux quanta to each electron.

In the mean field approximation, the density of electrons is assumed to be uniform,
so that the Chern-Simons magnetic field is uniform too: Beg(r) = 2s®¢n, where n is
an average electron density. If we choose Chern-Simons magnetic flux to be opposite

to the applied magnetic field, the total magnetic field is given by Eq. 1.30.

12
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1.7 The Fermi Sea of Composite Fermions

So far we have been only concerned with odd denominator filling factors, since
this is the regime of the FQHE. But if we assume that Eq.1.30 can also be used for

even denominator filling factors, then we obtain an amazing result:

1
B* = ®pne — 25Tn =0 at v=—=— . (1.34)
ne 28

This suggests that 2DES at even denominator filling factors caused by the application
of a strong magnetic field might behave as if there were no net magnetic field.

Surface acoustic waves (SAW) experiments by Willett and collaborators [25, 26]
provided the first evidence that even denominator filling factors states are very spe-
cial and distinct from FQHE states. These experiments probed 2DES conductivity
0.2(q, w) for large ¢ and w. At frequencies around 1 GHz, transmitted SAW ampli-
tude and velocity shift started to exhibit distinct minima at v = %, which correspond
to a maximum in conductivity, o,,(g, w). At higher frequency and larger ¢ this en-
hancement of conductivity became much more pronounced.

A major advance in understanding physics of even denominator filling factor states
was a prediction of Fermi-liquid like states at those filling factors. Halperin, Lee and
Read (HLR) [19] investigated the physical implication of this hypothesis. They used
Random Phase Approximation for Chern-Simons Hamiltonian to calculate electro-

1

magnetic response functions. Conductivity, 04,(¢,w) at v = 5 obtained in their

calculations is given by:

2

e q 1
g = —— — fi = 1.35
%o = Srh ke 727 (1.35)

where kr is the Fermi wavevector and [ is the mean free path for composite fermions.

HLR theory explained SAW experiments and made new predictions which were sub-

sequently confirmed experimentally (see Fig.1.3).

13
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Figure 1.3: Experimental results (solid curve) and theoretical prediction (dashed
curve) of the shift in surface acoustic wave velocity, as a function of magnetic field,
near filling fraction » = 1/2. The theoretical curve is the prediction of the HLR
theory [19], broadened to account for sample inhomogeneity. The SAW frequency is
8.5 GHz and T ~ 200 mK. Adapted from [25].
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One of the assumptions in explaining SAW results was that of the fully polarized
electron system, which leads to the following expression for the composite fermion

Fermi wavevector:

kp = Vdrn . (1.36)

In Chapter 4 we will present OPNMR measurements of electron spin polarization
at v = % While at high magnetic fields the system is fully polarized, we observed
the evidence of the partially spin-polarized electron system as we lowered the ap-
plied magnetic field [27]. Our measurements of the electron spin polarization and
spin dynamics near the transition between fully and partially spin-polarized ground
states provide new constraints on the theoretical description of the v = % state. The
temperature dependence of our data will be compared with predictions of a weakly-

interacting composite fermion model and a recent Hamiltonian theory developed by

Shankar and Murthy [28, 29, 30].

1.8 Quantum Hall Ferromagnet

Although, in the early years of the QHE, the electron spin was considered to
be fully polarized at filling factors ¥ < 1 for high magnetic fields (B > 10T, an
introduction of the spin degree of freedom revealed new fascinating physics in the
QHE regime.

Halperin [31] was the first to point out the importance of spin in the QHE. He
noticed that in GaAs the Zeeman energy splitting (E; = ¢*uB) is roughly 70 times
smaller than the cyclotron energy (Ecyq = hw,.). This is because the effective electron
mass and g-factor in GaAs are m* = 0.068mg and ¢* = —0.44, where my is the electron
mass in vacuum. Another important energy scale is the Coulomb energy (E¢ ~ €?/ely,
where € ~ 13 is the dielectric constant in GaAs). Estimations of those energy scales

for B = 10T give us: E; ~ 3K and E.yq ~ Ec ~ 200K. This suggests that even
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for v < 1 it is possible to have partially or completely unpolarized ground states, for
instance, if they are favored by the exchange part of the Coulomb interaction [32].
The most surprising idea in the spin physics of the QHE is that the ground state
of the IQHE state v = 1 is the itinerant ferromagnet which has novel spin textures
called Skyrmions as its charge excitations [32, 33, 34].
The ground state at v = 1 is very well described by the Laughlin-type wavefunc-
tion:
N 1 N
Yi(21,. .. 2n) = [[ (25— 2) exp|——5 Y |al?| . (1.37)
: 413
j<k l
Although it is an exact solution to the non-interacting Hamiltonian, the correlations
built into it by the Jastrow prefactor effectively minimize the Coulomb interaction.
Antisymmetry in this wavefunction is consistent the full electron polarization. The
Zeeman energy gap in the non-interacting Hamiltonian is boosted greatly by the
Coulomb interaction. In fact the v = 1 ground state is spontaneously fully polarized
even for the vanishing Zeeman energy (g* = 0).
Assuming that the local magnetization unit vector m(r) is a smoothly varying

order parameter, we can write down the Ginzburg-Landau effective Hamiltonian [32,

33]:

E[m] = %/d%‘ d,m”d,m” + g;;;f%B/dzr [1-m?(r)] + %E/dgr/dzr' %,

(1.38)
where p; is the spin stiffness [35, 36], p(r) is the charge density and the summation
over two-dimensional coordinate indices x4 and v is implied. The first term represents
the Coulomb exchange energy cost when the spin orientation varies with position.
The second term is the Zeeman energy and the last term is the direct Coloumb
interaction.

If we want to create a charged excitation of the v = 1 ground state, we have to

introduce a spin reversed electron because there no more room in the lowest Landau

16
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Figure 1.4: Schematic representations of a fully spin-polarized ground state (a), along
with its neutral and charged excitations: (b) spin wave, and (c) spin texture called
“Skyrmion”.
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level. But a single spin flip is very costly due to the gradient term in Eq.1.38.
S.L. Sondhi et al. [33] described a different charged excitation called Skyrmion which
minimizes the gradient energy. Qualitatively, this cylindrically symmetric spin texture
has a down spin at r = 0 and a smooth radial transition to up spins at r = oo. In
between, the nonzero XY spin components have a vortical configuration [33, 37, 38,

39]. The Skyrmion spin texture has a topological charge [32, 40]:
1
Qup = 5= / &t eapm(r) - [Bam(r) x Jgm(r)] , (1.39)

which corresponds to the number of times our 2D plane is wrapped around the order
parameter sphere by the r — m(r) mapping. Using the familiar method of the
adiabatic insertion of a flux quantum and taking into account the QHE (Eq.1.1 and
Eq.1.2), it can be shown (see, for example, [32, 41]), that the charge of a Skyrmion is
—eQtop- Skyrmions with ) = 1 or anti-Skyrmions with ¢ = —1 are the lowest energy
charged excitations of v = 1 state.

A Skyrmion has an effective number of spin reversals K and a size A. Since the
gradient energy in Eq. 1.38 is scale invariant, K and A are determined by the com-
petition between the direct Coulomb energy (which increases both) and the Zeeman
energy (which reduces both). H. A. Fertig et al. [42] predicted that the addition of
Skyrmions to the ¥ = 1 ground state would result in the rapid drop in the electron
spin polarization, as |dv| is increased.

S.E. Barrett et al. [34] were first to directly measure electron spin polarization at
and around v = 1 using OPNMR (Fig. 1.5). Their measurements are in striking dis-
agreement with the independent electron model, where the electron spins are assumed
to be fully polarized in the partially filled first Landau level (i.e. at v < 1), while each
electron introduced into the next available Landau level is spin-down, thus reducing
the overall spin by 1, for v > 1 (solid line, Fig. 1.5 (top)). Instead, the observed rapid

depolarization of the electron spin system on either side of v = 1 is consistent with
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Figure 1.5: Top panel: Knight shift measurements of electron spin polarization plotted
vs. filling factor v» and compared with both a single particle and Skyrmion-based
model. The single-particle polarization is based on a simple counting argument, one
spin flip per unpaired flux quantum for »>1, and S, =1, for v <1. Bottom panel:
Knight shift as a function of temperature at a filling factor close to v=1. Reprinted
from Barrett et al. [34].
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K ~ 3 spin flips per Skyrmion or anti-Skyrmion. These findings were subsequently
confirmed by magnetoabsorption spectroscopy measurements of electron spin polar-
ization by E. H. Aifer et al. [43] and M. J. Manfra et al. [44] in the neighborhood of
v =1, whereas the transport measurements right at v =1 supported the existence of
Skyrmion—anti-Skyrmion pairs [45, 46]. These and other [47, 48, 49, 50, 51] experi-
mental results are consistent with the Skyrmion model.

These surprising developments stimulated a large number of theoretical studies of
Skyrmions and their properties. One of the central questions was the nature of the
many-Skyrmion ground state. Would Skyrmions form a crystal [52, 53, 54, 55, 56,
57, 58], and, if so, what symmetries would it possess? Does disorder [59] affect the
Skyrmion size A and spin number K as T' — 0? While these questions are still under
active investigations, basic aspects of the Skyrmion model have not yet been tested
experimentally. For example, the detailed shape of a Skyrmion has not yet been
measured with local probes, presumably because the quasiparticles are delocalized
at high T'. In Chapter 3 of this dissertation we will present the first spectroscopic
evidence of the Skyrmion localization as T — 0. Our OPNMR measurements suggest
that the localization is a collective process and the data at the lowest temperature

(T = 0.4K) appear to rule out the 2D lattice of conventional Skyrmions [60].
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Chapter 2

Experimental Set-Up and

Techniques

2.1 Optically Pumped Nuclear Magnetic
Resonance

Nuclear Magnetic Resonance (NMR) spectroscopy [61, 62] is a powerful local
probe of the electronic and structural properties of bulk materials, with applications
in physics, materials science, geology, chemistry, biology, and medicine (through Mag-
netic Resonance Imaging and Microscopy). Unfortunately, the low sensitivity of NMR
has severely limited its application in studies of microscopic samples, such as quantum
semiconductor structures, which are often impossible to produce in large quantities.
Sandwiched between thick barriers, the semiconductor quantum wells containing the
2DES are just a tiny fraction (< 1%) of the bulk sample. In equilibrium, the NMR
signal produced by them is overshadowed by the tail of a much larger barrier sig-
nal that is at nearly the same frequency. Finally, typical nuclear Zeeman splittings

(~5mK) correspond to the polarization of nuclei that is small even at low temper-
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Figure 2.1: (A) "Ga OPNMR spectrum (solid line) of a single gallium arsenide
quantum well.
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atures (~1K) and high magnetic fields (~ 10 Tesla). As a result, typical noise level
exceeds the NMR signal from nuclei in the quantum wells. Going to still lower tem-
peratures may help although the equilibration time of the nuclei typically becomes
much longer than the time scale of the experiment.

In recent years, however, a novel technique called optically pumped nuclear mag-
netic resonance (OPNMR), which was developed at AT&T Bell Laboratories, has
made studies of microscopic samples possible. Optical pumping hyperpolarizes nu-
clear spins in semiconductor quantum wells, enabling the direct detection of the
radio-frequency NMR signal from these microscopic structures [63]. The signal boost
achieved using OPNMR (e.g., see Fig. 2.1) makes the study of single interfaces on the
interior of samples feasible, which can reveal important, local details about nanoscale
structures. In particular, OPNMR experiments have provided many interesting in-

sights into the rich spin physics of 2DES in the Quantum Hall Regimes [2, 3, 64].

2.2 Samples and Sequences

Our experiments would not be possible without extremely clean samples grown by
Loren Pfeiffer and Kenneth West at Bell Laboratories. Many important discoveries
in the field of the QHE were made using sample grown by those world class experts.

Most of the samples that we have studied to date are symmetric, delta-doped
GaAs/Alg1GaggAs multiple quantum well structures [6, 7], containing between ten
(sample 10W) and forty (sample 40W, sample N11) isolated wells (see Fig. 2.2). Each
GaAs quantum well (~ 300 A thick) is surrounded by Alg;GaggAs barriers (~ 3600 A
thick for samples 10W and 40W, and 1800 A thick for sample N11). The GaAs
quantum wells are doped with electrons ( n ~ 7 x 101%m~2 for 10W, 40W and
n = 1.52 x 10" em=2 for N11) due to the presence of Silicon delta-doping “spikes”

in the center of each barrier. The resulting 2DES has a very high mobility (1 >
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1.4 x 10% cm?/V's), with an electron density that is extremely uniform from well-to-
well and unusually insensitive to light [65]. For the densities studied here, only the
lowest subband is occupied.

The basic OPNMR measurement uses the sequence SAT—7,—7p—DET (see Fig. 2.3).
At the low temperatures nuclear relaxation times can be extremely long (up to sev-
eral hours), making nuclear polarization essentially history-dependent. To avoid this
complication, we use a saturation pulse train (SAT), which repeatedly tips the nuclear
spins and lets them spread in the z—y plane, effectively scrambling them so that the
net polarization becomes zero.

During 77, the sample is illuminated with circularly-polarized laser light incident
along the applied magnetic field, using a photon energy above (below) the bandgap of
the well (barrier), that induces a non-equilibrium electron spin polarization localized
in the quantum well. The nuclei in the well are then dynamically polarized via the
electron-nucleus hyperfine couplings [66, 67]. Therefore, the enhanced NMR signal
observed after a short illumination period ( e.g. 7, ~ 10 sec ) is due to well nuclei.
Eventually (e.g., as 7, — 200 sec), the enhanced nuclear polarization in the wells
spreads into the barrier regions because of nuclear spin-diffusion. Thus, the "'Ga
NMR spectra of the GaAs well and the AlGaAs barrier may be extracted from the
short and long 7, OPNMR spectra, respectively [34, 47]. The remainder of the
OPNMR sequence represents a period in the dark (7p), and the detection of the
NMR free induction decay signal following a single 7/2 pulse (DET). The OPNMR
signal may be acquired with the light on (7p = 0), but to study the equilibrium
properties of the electronic system, data are acquired at least one second after the
laser has been turned off ( 7p > 1 sec ). The nuclear spin-lattice relaxation times
are so long that the factor of ~ 100 enhancement of the nuclear spin polarization
(at the end of 1) persists through 7p, enabling the direct, radio-frequency detection

of the NMR signal. State-of-the-art NMR (e.g. multiple pulse sequences, double
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Figure 2.2: Schematic diagram of a quantum well sample, with the epitaxial layer
structure and the corresponding electron energy bands shown as a function of the
spatial coordinate 2’ along the growth direction.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



SAT 90° ACQ

@ « [~ ¢~ vaV

laser | |

time -

Equilibrium

(b)

c
ie)
z' ©
(c) after SAT T
- Y
z' CCL)
(d) Short T c
- T a
Z| . . ({_)
(e) Longer 7 S
3]
S
Z
A
(f) 71 meV t » '%‘f
. S O
812nm LCP light T conduction band | B
NN N NN 1.52 eV a
i SN ¢ valence band S
N N N . =
l 37 meV 3
me Y Q
/W\‘\ L
ZI

Al, ,Gag ,As  GaAs Si doping
~ a - -~ ﬂ

z' Growth Direction

Figure 2.3: (a) - OPNMR timing sequence, which includes a saturating train of rf
pulses (SAT), a “Light on” period 7, followed by a “Dark time” 7p; a single 90°
tipping pulse, and NMR acquisition (ACQ). (b—e) — the nuclear polarization in the
spatial dimension 2’, along with (f) the band diagram and (g) the schematic of the

sample, same as in Fig. 2.2.
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resonance methods, multidimensional spectroscopy, etc.) can be appended to the
above sequence in a straightforward fashion.

Using the OPNMR approach, we have achieved spin temperatures as low as
Tructear ~ —100 mK, corresponding to nuclear spin polarizations as high as Ppycear ~
5%. Recently, novel optically-detected NMR experiments have done better [68, 69],
reaching Ppycear ~ 80%. While the optical pumping step is similar in both techniques,
there is an important difference - the OPNMR experiment uses direct detection of the
rf-signal, so the whole sample can contribute. In other words, the inferred polariza-
tion in our experiment is actually an average value for the nuclei in the quantum well,
and so nuclear spin diffusion in the sample is probably setting a limit on the degree
of P,yciear that we can produce. Despite this limitation, the signal boost achievable

using OPNMR is still large enough to be useful (e.g., see Fig.2.1).

2.3 OPNMR Equipment

2.3.1 Superconducting Magnets

Most of the measurements in this dissertation were performed using an Oxford In-
struments 12 Tesla/89 mm wide bore Teslatron high resolution NMR, magnet, which
was operated in the persistent current mode during the experiments. It was specif-
ically designed to meet the stringent requirements of NMR experiments, namely,
magnetic field homogeneity and stability.

To achieve magnetic field drifts of less than 0.1 ppm/hour, the magnet was slowly
energized to a desired value of the magnetic field with an overshoot of ~0.017T, and
then brought to the required field after a ~ 20 min wait.

Once the stability of the field was checked by monitoring a DoO NMR signal

overnight, the magnet was shimmed to improve the field homogeneity. A set of
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. . . . a 62 a_ 6_ 62 i
six superconducting shim coils was used to cancel 5, 2—, 5-, 50 D03 and 5

g—sg gradients and achieved a ~0.2ppm magnetic field homogeneity over one cubic
centimeter in the center of the field. Mapping of the magnetic field was done using the
deuterium NMR signal from a ~1mm?® droplet of D,O inside a capillary mounted
in a shimming probe that was built for that purpose. Each shim coil was calibrated
by recording its contribution to the field distribution for a given current through the
coil. Then, the current through the shim coil were calculated to cancel the appropriate
spatial derivative of the field.

During the course of this dissertation Yale University subsequently purchased a
15.3 Tesla/124mm wide bore superconducting high resolution NMR magnet from
Magnex Scientific. The NMR-quality specifications of this magnet (homogeneity bet-
ter than 1ppm over lcm diameter x2 cm high, stability better than 0.03 ppm/hour),
combined with its super-wide bore diameter and its strong field, open up entirely new
experimental frontiers. We have already used this magnet for room temperature 2°Si
NMR measurements. A dilution refrigerator has been ordered to fit into the bore of
the magnet, which will allow experiments at ultra-low temperatures (T~10mK).

Although the large bore diameter and high magnetic field strength provide the
ability to reach an extreme B/T ratio, these attributes give rise to rather large stray
fields. For example, prior to the active shielding upgrade, the 5 gauss line had a
12.3 meter diameter, which would spill out of the building, preventing the magnet
site from meeting safety guidelines. The field would also exceed 10 gauss on the 1st
floor (over 2 floors above the magnet!) Closer to the magnet, fields exceeding 50 gauss
would be found in over half of the room, which would adversely affect the operation of
the NMR spectrometer. The interaction of the magnet with magnetic items brought
into the lab would also be much stronger than usual for an NMR system, limiting its
performance, and presenting a real safety threat.

In order to solve the problem of a stray field, we considered both passive and active
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Figure 2.4: Side view of the 15.3T /124mm magnet site in Yale’s SPL. The red contour
is the 5 gauss line of the magnet stray field after the active shielding upgrade.
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Figure 2.5: Cross-sectional view of the 15.3T/124mm wide bore magnet with active
shielding. Active shield sections (#17,18) carry current in the opposite sense com-
pared to inner NbgSn sections (such as #4). Originally, this magnet was ordered
by a pharmaceutical company and was designed to have 17.6T maximum field, but
it didn’t meet the field drift specifications. After inner sections #1-3 were removed,
magnetic field drift improved and the RT bore of the magnet was increased to 124mm.
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Table 2.1: Magnex Scientific magnet specifications.

Central field

Field stability

Operating current

Inductance

Stored energy

Field homogeneity:

Homogeneity volume
Homogeneity

Room temperature bore diameter
Helium boil off rate

Volume of the helium reservoir

Magnet weight

15.3 Tesla
< 0.03 ppm/hr
265.6 Amps at 15.3 T
130 H
4.6 MJ
cylinder: 10mm dia.x 20mm length
< lppm
123.7mm
< 150cc/hr
733.5 Liters

11,000 Ibs

shielding approaches. We worked with Magnex Scientific to identify designs that met
all of our constraints. Fig.2.5 shows the cross-sectional view of the 15.3 T/124 mm
magnet sections (#4-16), with the addition of active shield sections #17, 18. These
outer sections are connected in series with the main magnet, and they carry current
in the opposite sense. The number of turns in #17, 18 is carefully chosen to exactly
cancel the moment of the original magnet at all operating fields. Our scaling analysis
showed the advantages of pushing the active shield diameter out to the physical limits
imposed by the site (e.g., less magnet wire needed, and a smaller field reduction), so

the design shown in Fig.2.5 was developed. With the active shielding, the 5 Gauss
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line has a ~ 4.4 meter diameter which stays inside the lab, and well below the first

floor (see Fig.2.4).

2.3.2 NMR spectrometers

Most of the experiments were carried out using a home-built NMR spectrometer
assembled by Nick Kuzma [70] and Pankaj Khandelwal [71], based on a TecMag
Aries pulse programming and data acquisition unit (Figure 2.6). The spectrometer
was designed to cover the radiofrequency (rf) range of 10 to 165 MHz.

Throughout all experiments described in this thesis quadrature detection [72] was
used, which effectively allows one to record both z and y components of the precess-
ing nuclear magnetization (referenced to the frame rotating with the frequency of the
synthesizer) into two data acquisition channels, commonly called “real” and “imagi-
nary”. This was accomplished by splitting the output of the 60 dB Miteq preamplifier
into two identical in-phase signals (with a two-way 0° Minicircuits splitter/combiner)
and mixing them with a pair of pure sine waves at the synthesizer frequency (homo-
dyne detection), one of which was delayed in phase by 90° (Fig. 2.6). The output
“I” (intermediate frequency) signals from the mixers were then further amplified,
low-pass filtered, and amplified again using a two-channel Krohn-Hite digital filter.
Finally the voltages in both channels were digitized and stored as a function of time
in a TecMag data acquisition module, averaged over multiple NMR “scans” to boost
signal to noise, and dumped into computer memory for further processing.

To obtain a spectrum I(f) from the recorded free induction decay of magnetiza-
tion M, (t), digital data processing was used [72]. Typically, it involved (i) base line
adjustment to suppress constant voltage offsets; (ii) gaussian broadening of 0.5 kHz
full width at half maximum (FWHM) to reject long-lasting harmonic noises; (iii) com-

plex fast Fourier transform (FFT); (iv) phasel correction to compensate for missing
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Figure 2.6: Schematic diagram of the home-built radio frequency spectrometer, used
in all NMR/OPNMR measurements reported in this thesis. The transmitter (bottom-
left corner) produces up to 1 kW of output pulse power in the 10~-165 MHz range, with
less than a 100 ns response time. The receiver circuit (right, bottom to top) has up to
100 dB of total gain and includes a quadrature detector, followed by a 2-channel digital
low-pass filter and a 2-channel A/D converter with the 1 MHz acquisition rate. Also
shown is a PTS frequency synthesizer with an oven-controlled temperature-stabilized
oscillator, which provides the time base for the experiment, and serves as a frequency
source for the transmitter and the mixers in the receiver circuit. Adapted from [70].
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first data-points, filter group delay, etc.; and (v) phase 0 correction to compensate for
the cable length plus an unknown phase shift in the impedance-matched tank circuit.
If any distortion still remained in the base line due to persistent ring-down or oth-
erwise corrupted first few data points in the time domain, (vi) low-order harmonics
were fitted to the base line in the frequency domain and were then subtracted off to
avoid shifting of an apparent peak position due to underlying slope in the base line.

Recently, our lab has also acquired another spectrometer based on the Tecmag
Apollo NMR console. This spectrometer has a two—channel transmitter, which is
designed for double resonance experiments over a broad frequency range (5-450 MHz,
and 5-900 MHz). The digital receiver has a bandwidth of 3.33 MHz, and maximizes
sensitivity while eliminating several artifacts that corrupt low-level signals. Unlike
the first spectrometer, Apollo has a heterodyne detection. Here, the NMR signal is
demodulated to an intermediate frequency of 12.5 MHz rather than almost DC level
in the homodyne detection. Also, the signal is directly digitized at the intermediate
frequency and then digitally filtered which eliminates baseline roll (artifact due to the
detection circuit ringing).

While testing this spectrometer, we discovered that the detected NMR signal
from the Apollo spectrometer was worse than that from the Aries spectrometer for
the same conditions (the same sample and detection circuit, etc.). The problem was
due to the saturation of the input amplifier stages in the receiver block of the Apollo.
Decreasing the gain of the preamplifier (substituting the 60 dB Miteq preamplifier to
the 45 dB one) helped solve this problem. But even after that, the signal to noise
ratio (SNR) was about 40% worse for the Apollo. After talking to Tecmag engineers,
we realized that due to the fact the NMR signal (at 1) is mixed with the rf signal at
(v +12.5) MHz (heterodyne detection), noise at (vy + 2 x 12.5) MHz is folded into
the detection window. The problem was solved by using a low pass filter right after

the preamplifier. After the improvements described above, the Apollo spectrometer
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performs as good as the Aries does.

2.3.3 Varying Experimental Parameters

In our experiments near ¥ = 1, in order to investigate the Skyrmion localiza-
tion mechanism, we varied two parameters: the Landau filling factor » and sample
temperature T'.

We used a *He sorption-pumped Helior cryostat made by Oxford Instruments
for our low temperature measurements (0.29 <7 < 20K). Its base temperature (T =
0.29K) was achieved by pumping on liquid *He with the charcoal pump cooled to
4K with liquid “He. When all of He was absorbed by the charcoal pump, we
had to recondense it by warming the charcoal to ~ 45 K. Intermediate temperatures
(0.29 < T < 1.5K) could be achieved by controlling the charcoal temperature, thereby
its pumping speed. An additional heater wrapped around the 3He pot was used to
get to higher temperatures. We also used Oxford *He bucket dewar borrowed from
Kurt Zilm’s lab for measurements at 1.5 K, since it was much easier to use than the
3He counterpart. The samples, about 4mm by 6 mm by 0.5mm were in good ther-
mal contact with liquid He and a calibrated RuQO, thermometer, which was used to
monitor the temperature.

Using a rotator assembly, we could vary the angle 6 between the sample’s growth
axis and the applied field By, thereby changing the filling factor v=nhc/(eBcos 0)
in situ, where h is Planck’s constant, ¢ is the speed of light, e is the electron charge,
and n is the 2D electron density in each well. An angular precision of +0.1° over the

wide range of angles (—60° < 6 < 60°) allowed us to finely tune v.
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2.3.4 Laser and Optical Assembly

We used Coherent continuous wave lasers (a 7 Watt Innova 300 Argon-ion to pump
a 1.5 Watt tunable Titanium:sapphire of the 890 series) as a source of light, backed-up
(in case of failure) by a 35 mW temperature-controlled diode laser. The frequencies
of both systems were calibrated using a wavelength-meter. Upon exiting the laser,
the light was sent through a A/2 plate and a linearly-polarizing beam-splitting cube
so that the power of the light could be adjusted by rotating its polarization direction
using the plate, thus determining which fraction of the light would travel straight
through the cube, and which would be sent 90° away into the beam trap. Light was
further chopped with a home-made TTL-controlled beam shutter and brought into
the cryostat via a multimode optical fiber.

The optical assembly was mounted ~ 20cm above the sample at the 1.5 K point
of the cryostat. Upon exiting the fiber, the diverging (about 4 20°) light cone was
collimated with an anti-reflection coated lens and then left-circularly polarized by
going through a Polacor linear polarizer (a grating of microscopic parallel metal strips)
and a quarter-wave plate. Half of the light power was absorbed by the linear polarizer,
so a good thermal link to the cryostat’s 1 K pot was essential to handle this heat load.

In practice, the fast axis of the quarter-wave plate was aligned 45° to the direction
of strips on the linear polarizer by minimizing power variations of the light that passed
first through the assembly and then through a slowly rotated polarizing cube. Before
each cool-down, the size of the light spot hitting the sample was adjusted by sliding
the tip of the fiber connector up or down relative to the lens. The collimated beam
was then aimed at the sample by adjusting double nuts on the three screws that
held the optical assembly in space above a baffle in the cryostat. This arrangement
worked well over several years of experiments, with minor set-backs when the lens

occasionally unglued from its mount and needed to be glued back on again.
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Chapter 3

OPNMR Studies of Skyrmions and

Their Dynamics

In this chapter, we present new OPNMR measurements performed on sample
N11. This is the same piece that was previously studied by S. E. Barrett et al. [34]
in their earlier Knight shift measurements near v = 1. Figure 3.1a shows their main
discovery: the Knight shift dropped more rapidly than first expected on either side
of v = 1, providing the first experimental support for the theoretical prediction of
Skyrmions [33, 42]. Using the slope of the Knight shift drop, they deduced that
Skyrmions (v > 1) and anti-Skyrmions (v < 1) have K~ 3 spin flips.

Here at Yale, we have developed an improved OPNMR technique, which allows
us to acquire points more densely along the v axis, and to take data down to much
lower temperatures (T — 300 mK). These advances enabled the present detailed study
of sample N11, that covered the range 0.9 <v < 1.1 (indicated by the red ticks on
Fig.3.1a).

Figure 3.1b shows the range of v — T parameter space sampled by the Bell and Yale
data sets, very close to v = 1. The earlier Bell Labs data [34] was fairly sparse, and at

“high” temperatures. The cuts through v—T space in the recent Yale measurements
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Figure 3.1: (a) Knight shift measurements (open circles) of S. E. Barrett et al..
(b) Different sets of our measurements are schematically represents by arrows in the
v—T parameter space. Data of S. E. Barrett et al. are also shown (symbols).
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are on a much finer grid, and reach lower T', which combine to reveal new physics.
Fig. 3.1b is a roadmap for the rest of the chapter. In Section 3.3, we show our mea-
surements of the electron spin polarization exactly at v = 1 (blue arrow in Fig. 3.1b).
Dashed arrows represent our OPNMR measurements at constant temperatures, as we
change the filling factor (Section3.4.1). And in Section3.4.2, we describe measure-
ments at constant filling factor, as we cool our sample to 300 mK (black arrows in

Fig. 3.1b). In later Sections, we analyze our data and compare it with the simulations.

3.1 OPNMR Spectra in the Motionally Narrowed
Limit

Figure 3.2 shows "'Ga OPNMR emission spectra (solid lines) over a range of
temperatures at Landau level filling factor v = % Nuclei within the quantum wells
are coupled to the spins of the 2DES via the isotropic Fermi contact interaction [61],
described by the following Hamiltonian:

8 o A
He—n = —:3)_ 7e7nh2 Z Iz Sj 5(Ri_rj) ) (31)
(%]

where 7, and ~, are the gyromagnetic ratios for electrons and nuclei located at posi-
tions r; and R; respectively.

The corresponding well resonance (labeled “W”) is shifted and broadened relative
to the signal from the barriers (“B”) [47, 73, 74]. We define the Knight shift (Kg) to
be the peak-to-peak splitting between “W” and “B”. Qualitatively, the temperature
dependence of K¢ (Fig.3.2b) is due to the increasing spin polarization of the electrons
as they are cooled into a ferromagnetic ground state.

In order to extract more quantitative information, we need to develop a model for
the observed spectra. The asymmetry of the well lineshape has two origins: (i) the

quantum confinement within the well causes the electron density to vary across its
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Figure 3.2: (A) "Ga OPNMR spectrum (solid line) of sample 10W at v = 3, taken at
0 = 36.8° in B;,;=12T. Frequency shift relative to f,=155.93 MHz. The dashed line
fit is obtained by broadening the intrinsic line shape (shaded region) as explained in
the text. (B) Temperature dependence of the spectra at v = 3 (6 = 36.8°). Adapted
from [73, 74].

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



width w as p(z) =~ cos?(nz/w), for |z| <w/2, and (ii) the optical pumping preferen-
tially polarizes nuclei in the center of the well [73, 74]. Taking both effects into ac-
count, the intrinsic well lineshape may be written as IS K, f) =[f/(Ksin — f)]}/?.
This is like a microscopic, 1D version of Magnetic Resonance Imaging (MRI): the
frequency of a given nucleus is determined by its displacement from the center of the
well (i.e., at z = 0, f = Kgiu, while for |z| — w/2, f — 0). Nuclei in the barrier
may also contribute II"* = aqd(0) to the total intrinsic lineshape (Fig.3.2A, shaded

region). We then broaden this to obtain a two-parameter fit to the spectra:

Ksint 7
1) = ang(f) + | df'o(F- ) 2= (3.2

where g(f) is a &~ 3.5 kHz FWHM Gaussian due to the nuclear spin-spin coupling
[61]. All spectra at 1/:% (e.g., Fig.3.2, solid lines) are well-described by Eqn. 3.2
(Fig. 3.2, dashed lines) .

The amplitude of the barrier signal, ag, can be adjusted by the choice of OP-
NMR parameters. For example, ag was intentionally suppressed when acquiring
small K5 spectra (as shown in Fig. 3.2b). The other parameter of the fit, Kgiy, is
the intrinsic hyperfine shift of nuclei in the center of each quantum well. Kgiy is
directly proportional to P, the spin polarization of the 2DES. We can write this as
Kging= AP n/w, where n is the 2D electron density, w is the width of the well,
and A, is the hyperfine constant [73, 74]. For ferromagnetic ground states (e.g.,
v=1 or v=z) [33, 41], fitting the OPNMR spectra obtained at various T' provides

= <S7f (V7T)> p— Kg'int(T)

a direct measure of the electron spin polarization P(v,T)= (o) = KT rSgy N
2 Sint

the quantum well. A comparison of Kgini(T— 0) in three different samples yields
A, =(4.5%0.2) x 1073 cm?3/s, which makes Kg;,; an absolute measure of the elec-
tron spin polarization. Kgi, can also be derived from Kg (both in kHz) using the
empirical relation [73] Kgin=Kgs+1.1x(1—exp(—Ks/2.0)).

Note that the fitting function in Eqn. 3.2 has no explicit dependence on the (x,y)
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position of nuclei along the quantum well, despite the fact that NMR is a local probe.
This is because an implicit assumption of the underlying model is that all electron
spins are delocalized, so that (S, (v, T)), averaged over the NMR time scale (~ 20 usec),
appears spatially homogeneous along the plane of the well. The resulting lineshape
is “motionally-narrowed” [61]. In this limit, measurement of K¢ reveals the “global”,

time-averaged value of the electron spin polarization P.

3.2 Spectra at and near v =1

Figure 3.3 shows some OPNMR spectra for v close to one. In Figures 3.3b and
¢, there is also a third resonance (labeled “X”), in between the well and the barrier
signals. In contrast to “W”, the frequency of “X” is nearly independent of T" and
v. Comparing “X” to “W” and “B”, we find: (1) “X” has the shortest spin-lattice
relaxation time T} (= 40 s, see Fig.3.4), and (2) “X” may be optically pumped to
the lowest nuclear spin temperatures (77~ —40 mK). Thus, the conditions used for
Figs.3.3b and c (i.e., low light power, shorter 7, and 7p) enhance the amplitude
of “X” relative to “W” and “B” (i.e., the non-equilibrium nuclear spin temperature
is different for “B”, “X”, and“W”). By scaling equilibrium signal intensities, we
estimate that “X” is due to only ~ 2% of quantum well nuclei. In light of these
properties, we attribute the “X” resonance to nuclei located near “defect” sites that
attract electron-hole pairs during optical pumping (leading to low Tz), and Skyrmion-—
anti-Skyrmion pairs in equilibrium (leading to a smaller Knight shift for “X” than for
“W7).

The “X” resonance was not reported in Ref. [34] although we used exactly the same
sample as the Bell Labs group did. S. E. Barrett thinks that the Bell Labs group used
much more laser power near v = 1 so that “B” resosnance was much bigger and hid

“X” resonance under its tail. In the following analysis of the well resonance “W”, we
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Figure 3.3: Several ""Ga OPNMR emission spectra (a-c, solid lines, offset for clarity),
acquired at low T for different v, in By;=7.03 T. The frequency shift is relative to
fo=91.36 MHz. Dotted lines (a-c) are fits to the well “W” and barrier “B” resonances
using Eqn. 3.2. The same “W” resonance is obtained using either conventional NMR
absorption (a, dashed line) or OPNMR emission (a, solid line). The “X” resonance
is described in the text.
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Figure 3.4: "*Ga OPNMR emission spectra (offset for clarity), acquired at T' = 1.68K
and v = 1 for different dark times 7p. Spectrum at 7p = 0 was acquired with light on
all the time. For 7p > 0, the “W” resonance frequency and linewidth stay the same,
indicating that the electron system reached an equilibrium. As we increase 7p from
7p = 1s, the amplitude of the “X” resonance decays very fast with 77 = 40 s, while
the “W” resonance stay almost unchanged even for 7p = 640s. The little dip on the
left of “B” for long 7p is the sign of the signal from GaAs substrate growing in the
opposite of OPNMR direction.
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will exclude the “X” resonance from consideration.

The hyperfine interaction (Eq.3.1), which is the source of the Knight shift in
NMR, may also be an important part of the electron spin Hamiltonian, if the nu-
clear polarization is very large (P, ~ 100%). Hyperfine magnetic field, produced
by fully polarized nuclei in GaAs was estimated to be -5.3 Tesla [75]. Since the nu-
clear hyperfine is opposite to the laboratory field, it will reduce the Zeeman energy
of electron system, which may lead to bigger size of Skyrmions. Time-resolved pho-
toluminescence experiments by 1. V. Kukushkin et al. [76] provided support for this
picture.

Although in our experiments the highest achieved nuclear spin polarization (P, ~
5%) is not sufficient to produce observable effects, we also performed some conven-
tional NMR experiments to investigate the effect of optical pumping on OPNMR
spectra. NMR measurements are not too difficult for filling factors away from v =1,
where T) for the “W” resonance could be as short as ~ 20s, as was uncovered by
measurements of R. Tycko et al. [47]. At v = 1, NMR measurements become very
difficult since 7} could be as long as hours at low temperatures.

The dashed line in Fig. 3.3a is an NMR spectrum that was obtained immediately
after the cooldown from room temperature, acquired under similar conditions as the
OPNMR spectrum shown (Fig.3.3a, solid line). It is clear that the frequency and
linewidth of “W” are not artifacts of the optical pumping process. Thus, the “W?”
resonance may be detected with higher sensitivity using OPNMR, but the measured
Knight shift (Ks) and full-width half-maximum linewidth (I',,) are the same as in
conventional NMR.

All spectra at v=1 (e.g., Fig. 3.3c) are well-described by the same two-parameter
fit (dotted lines) [73, 74] that was described above (Eqn. 3.2) and previously used for
all spectra at 1/=%. In this “motionally-narrowed” limit, measurements of Kg reveal

the “global”, time-averaged value of the electron spin polarization P.
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3.3 Electron Spin Polarization at v =1

In Chapter 1 we have already mentioned that the ground state at v = 1 is a
quantum Hall ferromagnet. It is different from ordinary metallic ferromagnets like
iron, which are usually partially spin polarized even at T = 0K to minimize the
kinetic energy. Since in the lowest Landau level the kinetic energy is quenched, the
v = 1 ground state is fully polarized.

The neutral excitations of a quantum Hall ferromagnet were considered by Y. A.
Bychkov et al. [35] and C. Kallin and B.I. Halperin [36], who computed the dispersion
relation for spin waves in the limit of zero quantum well thickness (; is the modified

Bessel function):

et [T k212 k212
B0 =g usB + T (1 ep(-E00) 1B (33)
ely 4 4
€ lo 2
E(k) =g'upB + — k for klp < 1. (3.4)

From the above equation and the dispersion relation in terms of the spin stiffness

(ps in Eq. 1.38): E(k) = g*upB + 4wl2 p;k?* (see, e.g., ref. [32]), we have:

62

e = T6vanel,

Earlier measurements of v = 1 spin polarization [34] stimulated advances in the

(3.5)

theoretical description of QHFM [77, 78, 79, 80], since the conventional assumption of
dilute spin waves cannot describe the experiments, once T' goes above ~ Tz¢eman. For
example, calculations by N. Read and S. Sachdev [77] are in a good agreement with
our data (see Fig.3.5), once the value of p, is reduced by a factor of approximately 2,
due to the finite quantum well thickness.!

The fact that the “motionally narrowed” model is able to fit spectra at ferromag-

netic filling factor v=1 has a clear implication: any spin-reversed excitations (e.g.

'For our experimental conditions, Eq.3.5 gives: p,~3K and p,/E,~ 1.5, while the effects of

finite quantum well thickness decrease the value of p,/E, to approximately 0.75 [81].
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Figure 3.5: The temperature dependence of the electron spin polarization for filling
factor v = 1 (open circles) calculated from OPNMR measurements of the Knight
shift as described in Section 3.1. The theoretical curve (solid curve) was calculated
by Read and Sachdev using the continuum quantum field theory of a ferromagnet
[77].
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thermally excited spin waves) must be delocalized, in order for (S,(v,T)) to appear
spatially homogeneous. As we show below, this “simple” picture does not cover all
cases. For example, in moving from v=1 to v=1 + ¢, we introduce charged spin-
texture excitations - Skyrmions [33]. The addition of Skyrmions to the system can
have profound effects on the spectra [34], which are not always in the “motionally
narrowed” limit [60]. For v # 1 and low T, the well resonance “W” (Figs.3.3a and

b) can also be much broader than “motionally narrowed” model fit (dotted lines).

3.4 OPNMR Evidence for Skyrmion Localization

Near v=1as T — 0

3.4.1 Localization of Skyrmions — Spectra vs. v

Figure 3.6 shows the Ks(v) and the T',(v) of the “W” resonance near v = 1,
for three different temperatures. As the temperature is lowered (Fig.3.6a—c), the
sharp peak in Kg(v) evolves into a “tilted plateau”. Figure 3.6b also contains the
Ks(v) data points reported previously [34]. While the new data are consistent with
the earlier measurements, probing Kg(v) on this finer scale reveals a small region on
both sides of v=1 where Kg(v)~Kgs(v=1)/v (dashed line in Fig.3.6c). This tilted
plateau is incompatible with the expression for Ks(v) derived previously [34], which
had assumed delocalized quasiparticles.?

The existence of the tilted plateau is a natural consequence of the localization of
the quasiparticles along the plane of the quantum well, such that the nuclei responsible

for the “W” resonance see fully polarized electrons (P=1), as if v=1 “locally”, even

?In this limit, P(v) = 1- 2(K+1)(1-1) for v>1 and P(v) = 1 - 2K (2-1) for v<1. Experimentally,
K=2.60.3[34].
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Figure 3.6: The filling factor dependence of both K (solid symbols) and T, (small
open symbols) at (a) T=3.7 K, (b) T=1.6 K, and (c) T=0.4 K. Here, '}, is the full
width at half maximum (FWHM) for the “W” resonance, and 0°<6#<37°. Earlier
Ks(v) measurements in the same sample [(b) large open symbols] are consistent
with these results. Solid lines are to guide the eye, and the dashed line in (c) is
Kg(v) = Kg(v=1)/v , which is expected in the model in Fig. 3.7, for nuclei that are
far from localized quasiparticles.
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Figure 3.7: A “swimming pool analogy” shows how the tilted plateau in Kg(v ~ 1)
(Fig.3.6(b-c)) is a consequence of localized quasiparticles. In our experiment, we
vary 6 to change v, so while the local electron density may vary, the global electron
number is conserved. The local Knight shift (o« M,(R;)) is proportional to local
electron density, which we may represent as the water level in a pool. The water level
is uniform in space at v = 1. Inserting localized dipsticks into the pool (to create
‘quasiholes’ for v < 1) causes the water level to rise elsewhere; the opposite is true
for capillary tubes (i.e., ’quasiparticles’, v > 1).
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though v#1 “globally”. More precisely, for nuclei at Ry=(X"',Y’, Z'=0) in the center
of the quantum well, the local Kgiy(R;) is directly proportional to the z-component
of the local electron spin magnetization density, M,(R;) [61], which is in turn propor-
tional to the product of the electron number density and the spin polarization, i.e.,
M,(Ry)ox |¢(R;))? P(R;) [74]. Recall that our sample has no leads attached, so that
the electron number is constant as we change the filling factor by tilting the sample.
If the quasiholes (or quasiparticles) introduced into the system by going to v=1—¢
(or v =1+¢) are localized, then, in order to keep the total number of electrons fixed,
|#(R;)|? must increase (or decrease) far from these charged excitations, which pro-
duces the observed tilt in the plateau near v=1.2 This is just the same effect as the
rise (or fall) of the water level in a pool induced by placing solid dipsticks (or hollow
capillary tubes) into it to create localized density minima (or maxima), which corre-
spond to quasiholes (or quasiparticles). In this analogy, changing the filling factor by
adjusting Byycos 8 varies the number of dipsticks or capillary tubes in the pool and
the Knight shift is given by the water level. Clearly, the fact that NMR is a local

probe has become important.

3.4.2 Breakdown of the motional narrowing — Spectra vs. T

Taking different slices through the (v, T') plane provides additional insights. Fig-
ure 3.8 shows Kg(T') and I',,(T') for several filling factors near v=1. For v#1, lowering
the temperature causes [',,(T) first to increase and then to drop, in stark contrast to

the temperature independence of the well linewidth at #=1. The non-monotonic tem-

3The expression for the tilted plateau, Ks(v) = Ks(v=1)/v, is straightforward from the above

discussion if we assume that the local density, ni.., away from localized quasiparticles is consistent

he

with v=1 “locally”: vipc = ; gmcose =1, while the “global” filling factor is given by: v= ﬁfgﬁ,

where n is the average electron density.
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Figure 3.8: The temperature dependence of the Knight shift (filled symbols) and the
linewidth (open symbols) for several filling factors 0.949<r<1.045. Lines through
Kg(T) are to guide the eye. Curves through I'y,(T) are fits described in the text.
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Figure 3.9: The temperature dependence of the Knight shift (filled symbols) and
the linewidth (open symbols) for several filling factors 0.267<r<1/3 in sample 10W.
Lines are to guide the eye. Adapted from [74].
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perature dependence (Fig. 3.8) is consistent with the evolution of the “W” resonance
from motionally-narrowed to frozen as the temperature is lowered. Qualitatively sim-
ilar trends were uncovered in earlier measurements at v < 1/3 (Fig. 3.9) [74].

Both cases are rather unusual examples of motional narrowing phenomena in
NMR, since the nuclei are fixed in the lattice at such low 7. Instead, the motion
is that of delocalized spin-reversed quasiparticles, that results in fluctuations of the
local hyperfine field 6 B¢(R;) at each nuclear site R;. The shape of the resonance is
sensitive to O(R;) = 7(R;)0B¢(R;)"y, where 7(R;) is the characteristic time scale of
the fluctuations, and *y is the nuclear gyromagnetic ratio [61). As T is lowered, the
“W” resonance goes from the “motionally-narrowed limit” (at high 7', ©(R;) << 1)
to the “intermediate limit” (at T near Tpnaz, where Doy (Toes) =0, ©(R;) ~ 1) and
then to the “frozen limit” (at low T', ©(R;) >> 1). Figures 3.6 and 3.8 show that all

three limits are experimentally accessible near v=1.

3.5 Simulations of OPNMR Spectra — Skyrmion
Dynamics.

Additional, quantitative information about the localization process may be ob-
tained by simulating the effect of Skyrmion dynamics on the OPNMR spectra [82].
Recently, in order to simulate spectra obtained near ¥=1/3, a simple, bipolar model
for the effect of spin-reversed quasiparticle dynamics on the OPNMR lineshape was
proposed [74]. In this simulation, the OPNMR linewidth increases substantially as
the time scale, 7, for local field fluctuations due to the motion of quasiparticles,
passes through W”Tmlm (i.e., ©® ~ 1). A more realistic model, which considered the
effects of two-dimensional diffusional motion of a square lattice of conventional K3

Skyrmions past fixed nuclei, was introduced recently [82] to explain the spectra near
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v = 1. The maximum NMR linewidth within this model also occurs at Tzﬁfﬁ_—)—o—).

Motivated by this improved model for Skyrmion dynamics in real space, we have
simulated the “motional narrowing” of the OPNMR lineshape (Fig.3.10). In this
simplified model, a nuclear spin “jumps” from a point inside a Skyrmion unit cell to
another point randomly and spends a time 7 at each position. The NMR signal is
calculated by averaging the signal from 500 such nuclei that start at arbitrary posi-
tions within the unit cell. By varying 7, we can control the characteristic fluctuation
time of the local field felt by the nuclei. We find that the maximum value of the
linewidth is insensitive to the Skyrmion shape, but is very sensitive to the number of
reversed spins [i.e., I (K 3) ~ ['"%*(K3*)]. For example, Fig.3.11 shows the simu-
lated linewidth plotted as a function of 7 for several K=3 quasiparticles, which have
different M!(r) profiles. For K3a and K3b, we use M (r)=1-2/(1+exp((r — R)/P)).

Figure 3.12 shows that the simulated linewidth for the KO Skyrmion hardly changes
in going from the “frozen” to the “motionally-narrowed” limit, in sharp contrast to
the data. Moreover, for |[§v| = 0.031, the measured % ~ I'™e*(K3*) (Fig.3.12).
Therefore, to explain the I',, (T, |§v| = 0.031) data, we require K ~ 3 even as © —1
from below; the Skyrmion still has a “large” spin even as it takes ~ 20us to travel
over the inter-Skyrmion spacing.

In the earlier measurements of Iy, (T') near v = 1/3, I'?** increased monotonically
as |0v| increased, while T,,,, was roughly independent of |dv| (Fig. 3.9) [74]. However,
['w(T) near v = 1 is quite different (Figure 3.8), since T,,,, decreases monotonically
as |0v| increases, while I'%* is roughly independent of |6v|. In order to compare our
simulated I'5"™(7) to both data sets, we must first determine the mapping between 7
and 7.

Recent simulations of the motion of a superconducting vortex lattice past fixed
nuclei suggested a simple dependence of the resulting NMR 73 on the characteristic

fluctuation time of the local field, 7 [83]. In our simulations of the motion of a
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Figure 3.10: Simulated NMR spectra for K3a Skyrmion lattice motion with different
jump times 7 and v=0.95. Spectrum evolves from “motionally-narrowed” regime to

"frozen” limit as we change 7.
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Figure 3.11: Well linewidth for K3a, K3b and K3* at v=0.95 as a function of the
characteristic fluctuation time of the local field, 7.
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Figure 3.12: Simulated linewidth for two different Skyrmions K3* and K0 at v = 0.97.
Measured I'7'** ~ 12kHz is consistent with K3* Skyrmion.
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Table 3.1: Best-fit values of U, AU, Ty, and 7, .

v |ov]  UIK] AUIK] Tmer Tolps]
0.969 0.031 8.0 £1.1 24 0.7
1.045 0.045 4.2 +1.6 1.7 1.7
0.949 0.051 0.6 +0.8 0.6 7.4

Skyrmion lattice past fixed nuclei, we found that the NMR linewidth is well-described
by a similar expression: ['S"™(7) = ['min 4 (['7mez _ ['min) 2Tmez where [ ~ 6 kHz,

T4 TR s
Tmaz #Sm ~ 20us, and I'M** depends upon dv. If we assume that 7 follows
an Arrhennius law [i.e., 7=7,exp(U/T), where To=Tyaz/€xp(U/Tnqez)], We arrive at
an expression for I'>!™(T) that is a good fit (solid lines) to the I',,(T) data in Fig.
3.8. The best-fit values of the activation energy U and the uncertainty AU may be

extracted at each |6v| (see Table3.1).

As [0v| increases, AU /U grows from ~1/8 to ~1. Apparently, the actual localiza-
tion process causes local field fluctuations that become more inhomogeneous as |6v/|
increases. This trend could be consistent with either a “weak pinning” or “quantum
phase transition” description of the localization process. For example, in the weak
pinning picture, each domain “j” of the Skyrmion crystal has a local activation energy
U;, which has a gaussian distribution g(U;) across the sample, consistent with the
measured (U, AU) for each |6v|. As a consequence, domains throughout the sample
share a common 7,4, for small AU /U, but at large AU /U, T4, varies from domain
to domain *. As a consistency check, we find that the measured I',,(7'|dv|) are in
good agreement with the < I'5"(T,|6v|) >4, extracted from simulated spectra that

assume a spread in the local T,,, across the sample (Fig. 3.13).

4In this picture, the earlier data at v=1/3 [74] are in the AU/U—0 limit.
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Figure 3.13: Well linewidth for K3* at ¥»=0.95 and v=0.97 as a function of 7. Also
shown is well linewidth for K3a for ¥=0.95 averaged over different values of U as
described in the text.
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3.6 The Skyrmion Localization Mechanism

Qualitatively, the |6v|-dependence of I',,(T) (Fig. 3.8) appears to rule out several
candidate mechanisms for the localization. For example, if individual Skyrmions
were strongly pinned by a distribution of traps, then, as év increases, quasiparticles
should “start” to localize at the same temperature, but “finish” at lower and lower
temperatures (Fig. 3.14). In contrast, as év increases, the whole I',,(T") peak shifts to
lower T (Fig. 3.8); e.g., at T' =~ 1.5 K, all Skyrmions can appear to be either localized
(at |dv| = 0.031) or delocalized (at |ov| = 0.051). We conclude that a collective
process is required to explain the trends in Figs. 3.6 and 3.8. This process, however,
does not appear to be the “melting” of a classical Skyrmion crystal (Fig. 3.15), since
the classical melting temperature should increase as the crystal density (and the bond
energy) increases [84].

Two other collective mechanisms are qualitatively consistent with the data. In the
first scenario, the data are explained by the thermally assisted melting of a quantum
Skyrmion crystal (Fig. 3.16), which is approaching a quantum melting transition
[85] at some |6v| > 0.05. In the second, the delocalization is due to the “depinning”
of a Skyrmion crystal (Fig. 3.17), since the soft (stiff) bonds of the crystal at low
(high) |6v| may easily (not easily) stretch to match the disorder potential, resulting
in a high (low) depinning temperature [84]. The nature of pinning phenomena has
been studied theoretically in a wide variety of condensed matter systems, e.g., charge
density waves [86], Wigner crystals [87], and superconducting vortex lattices [88],
moreover, Nuclear Magnetic Resonance has proven to be a powerful local probe of
pinning/depinning physics {89, 90, 83]. In the present case, the data appear to be
consistent with the “weak pinning” limit [86], perhaps because the density of ionized
donors, which give rise to the impurity potential, is ~ v/§v ~100 times the density

of quasiparticles.
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Figure 3.14: Strong pinning scenario. At low temperatures, Skyrmions (red and blue
filled circles) are trapped by the random disorder potential (represented by the black
curve). Since in this scenario, Skyrmion-Skyrmion interaction is neglected, Skyrmions
fill the lowest available potential minima. As the number of Skyrmions increases
(Av increases), the higher energy potential minima are occupied. Thus, for higher
Skyrmion density, localization should start at the same temperature but finishes at
lower temperature. This scenario (plot in the lower left corner) is inconsistent with
our data (empty circles). Blue lines and symbols correspond to the filling factor
v = 0.94 and red to v = 0.97.
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Figure 3.15: An illustration of classical crystals of Skyrmions at filling factors v =
0.97 (red) and v = 0.94 (blue). A crystal at higher density should melt at higher
temperature, since it is harder to break Skyrmion-Skyrmion bonds. This density
dependence of the melting temperature is inconsistent with our data.
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Figure 3.16: A phase diagram with a quantum critical point at a filling factor v,.
The black curve represents a boundary between localized and delocalized Skyrmion
states. As the Skyrmion density approaches the quantum critical point, the transition
temperature T, goes to zero. This scenario is consistent with our data.
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Figure 3.17: Weak pinning scenario. In this scenario both Skyrmion-Skyrmion in-
teraction and disorder are important. At lower Skyrmion density, crystal bonds are
softer and crystal can match disorder potential more easily, resulting in higher pinning
energy. Our data may be explained by the depinning of preformed crystal.
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3.7 Density driven delocalization

As we increase |6v/| at 0.4 K, there is a sharp transition between the “tilted” plateau
in Kg and the region where Ky falls off very fast. T, also increases dramatically at
this transition (Fig.3.18).

On the plateau, quasiparticles are localized and the “W” line in the OPNMR
spectrum is due to nuclei which “see” only fully polarized electron. We don’t observe
the signal from nuclei under localized Skyrmions, since the number of those nuclei is
small and the line from them is probably wide. As the concentration of quasiparticle
increases, they become delocalized. The Knight shift drops off quickly since the local
electron environment for majority of nuclei is no longer fully polarized. The “W”
line becomes much wider because quasiparticle dynamics is still slow compared to the
NMR time scale.

As the temperature is increased, the “tilted plateau’ becomes smaller and it is
completely vanished at T=3.7 K, where K as a function of v has a sharp peak at
v = 1, as expected from the Skyrmion model. At high temperatures, Skyrmion
dynamics is fast on the time scale of NMR, so that every nuclei “sense” the time-
average electron polarization and the Knight shift becomes directly proportional to
the global electron polarization.

In Fig.3.19, the (v, T) coordinates of dynamical transitions from plateaus in K
and T, are plotted. Lines connecting those points separate regions of (v, T') space
where Skyrmions are localized or delocalized on the NMR time scale. A simple
extrapolation of those points suggests that Skyrmions don’t localize at temperatures
higher than 2.2 K, which is consistent with our data at 7=3.7 K. This dynamical
transition as T — 0 may correspond to density driven quantum phase transition
between localized and delocalized quasiparticle states. From Fig.3.6, we note that

Ks and T, are temperature independent at v ~ 0.9 and v ~ 1.12. At those filling
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Figure 3.18: Kg (solid symbols) and I',, (open symbols) from Fig. 3.6(c). Regions of
dynamical transitions are highlighted with vertical bars. Special points (v ~ 0.9 and
v ~ 1.12) where K and I',, are temperature independent are also shown.
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Figure 3.19: The (v, T') coordinates of dynamical transitions from plateaus in Kg (red
squares) and T, (blue triangles) are connected by straight lines. The region inside
those lines close to ¥ = 1 correspond to localized Skyrmions. Outside of this region,
Skyrmions are delocalized.
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factors, the nuclear relaxation rate Tj is very fast (~ 20s) and also temperature

independent [47], suggesting that they may be quantum critical points.

3.8 Constraints on Skyrmion Shape due to OP-

NMR Spectra in the Frozen Limit

In the frozen limit, the fit previously used for the motionally-narrowed OPNMR
spectrum Eq. 3.2 [73, 74] is replaced by the more general formula:
Area Ksini(Ri)
I(7)=an o)+ Jof'o(f =) I8 (s (R, ) (3.6)
where the sum runs over all nuclei in the center of the quantum well, and Kg;,(R;) o
M, (R;), which in turn reflects the shape of individual quasiparticles and their spatial
arrangement along the plane of the quantum well. Since conventional Skyrmions are
expected to form a square lattice, we consider this possibility first.

Several theoretical approaches have been used to calculate M,(R;) for a single
Skyrmion excitation of the » = 1 ground state, which is a charged quasiparticle
carrying “K” reversed spins. Figure 3.20a shows the typical radial dependence of the
dimensionless M (r) expected [37, 38] for Skyrmions with K=0 (“K0”) and K=3
(“K3”). The K0 Skyrmion corresponds to the ordinary Laughlin quasiparticle, while
both theory and experiment suggest that the K3 Skyrmion is energetically preferred
for typical experimental conditions. Also shown in Fig. 3.20a is an ad hoc hybrid
between the two (“K3*”), that has both the tail of K0 and the three reversed spins
of K3.

As |dv| increases, it becomes much more difficult to calculate M’ (R;), since the av-
erage distance between the quasiparticles approaches their size. As a first approxima-

tion to the actual function, we simply use M (R;)=Min[M.(|Ri—1y|), M.(|Ri—r2]),
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Figure 3.20: (a) Expected radial dependence (in units of the magnetic length [,) of
M (r), for the K0, K3, and K3* Skyrmions described in the text. For |6v|=0.05, gray
scale images of M5™(R;) (Black=—1; White=+1) are shown within the unit cell of
a square lattice of either (b) KO, (c) K3, or (d) K3* Skyrmions. Also shown (in b-d)
are black contour lines at M5"™= 0.5, 0.9, 0.95, and 0.98.
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..., M'(|Ri~rn|)], where N Skyrmions are localized at positions (rj), and M,(r) is
given by the isolated Skyrmion calculations (see Fig. 3.20a). Figure 3.20b-d are
grey scale images of M>"(R;) within the unit cell of a square Skyrmion lattice at
|6v| = 0.05, for the three Skyrmions shown in Fig. 3.20a: K0 (b), K3 (c), and K3
(d). We can use M?"™(R;) to simulate the frozen limit OPNMR spectrum for various
Skyrmion shapes. To do this, we plug Kgin(R,0v)= (5%}_%?—02) M5™(R;,|6v|) into
Eqn. 3.6.

Figure 3.21 shows [K5™™(v), ['3%™(v)] extracted from these simulations, which may
be quantitatively compared to the low temperature data of Fig. 3.6c. We can rule out
the standard model of a square lattice of conventional K3 Skyrmions over most of the
plateau (see Fig. 3.21a and b); using smaller conventional Skyrmions (K2, K1) helps,
but not enough. Instead, the data are in much better agreement with simulations
assuming a square lattice of either K0 or ad hoc K3* Skyrmions. Apparently, the
existence of the tilted plateau requires that M5 (R;) ~ 1 over a large fraction of
the area between the quasiparticles, as in Figures 3.20b and 3.20d. This conclusion
is not sensitive to the details of our simulation over the range (|év| < 0.05) of the
observed plateau (e.g., changing to a triangular lattice, or including small disorder in
Skyrmion locations). If the localized state is a 2D lattice of quasiparticles, it appears
that they are either Laughlin quasiparticles (K0) or Skyrmions with very short tails,
like the ad hoc K3*.

Alternatively, the localized state may involve “clumps” of Skyrmions, which re-
sult in large Skyrmion-free regions. This may happen, for example, if the disorder
potential favors large length scale density fluctuations, subject to the constraint of
a collective localization process (see Figs. 3.6 and 3.8). For example, if conventional
K 3 Skyrmions formed localized 1D “stripes”, and if the inter-Skyrmion spacing along
the stripe is ~ 2l,, then the inter-stripe spacing would need to be ~ 60/, in order to

be consistent with the data at |dv| = 0.05. While the large Coulomb energy cost of
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Figure 3.21: Open symbols are [Ks(v), I'y(v)] data from Fig. 3.6c. Filled points are
[K$™(v), TS (v)] extracted from simulations described in the text. The points for
each Skyrmion type are joined by lines.
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such an extreme anisotropy would seem to make this kind of localized state much less
likely than the more uniform 2D lattice, we cannot exclude it from consideration. At
this point, there is no detailed prediction of any “clumped” states that may exist in
real samples. Consequently, more theoretical work is required before this alternative
picture can be compared to the data.

For a 2D lattice, the Skyrmion shape consistent with the data is surprising, since
the energetics of a single Skyrmion state would favor the conventional K3 over a
shorter tailed Skyrmion (like K'3*). However, this preference may not be the same
in a many Skyrmion state, where the energetics are more complicated. For example,
the energy of a single Skyrmion is independent of the phase angle ¢ which defines
the global orientation of the XY spin components. In the crystalline phase, how-
ever, interactions are generally expected to lead to preferred values for the relative
phase angle (¢;-¢;) between the Skyrmions at sites (%,7) [52]. Recent theoretical
studies of a square lattice of K3 Skyrmions suggested that it was equivalent to the
superconducting phase (SC) of the boson Hubbard model [54].

We speculate that the shorter tail of the K3* Skyrmion would allow ¢;,¢; to
remain uncorrelated, thereby fixing the number of reversed spins on each site K;
to an integer, which corresponds to the Mott insulating phase (MI) of the boson
Hubbard model [57]. If the total energy of this MI phase is lower than the SC phase,

the system prefers the K3* Skyrmion.

3.9 Conclusions

OPNMR measurements uncovered rich physics of the v = 1 QHFM. The “tilted
plateau” in the Knight shift data is the novel experimental signature of quasiparticle
localization. This is reminiscent of plateaus in the transport measurements which are

also due to quasiparticle localization.
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The dependence of spectra on both v and T suggest that the localization is a
collective process. Both the thermally assisted melting of a quantum Skyrmion crystal
and the depinning of a Skyrmion crystal are qualitatively consistent with our data.
The filling factors v ~ 0.9 and v ~ 1.1 are good candidates for quantum critical
points.

The frozen limit spectra appear to rule out a 2D lattice of conventional Skyrmions.
Simulations of OPNMR spectra in the presence of Skyrmion dynamics suggest that
we need K = 3 quasiparticles to explain our data even for slow Skyrmion dynamics
(1 ~ 20 us).

More theoretical and experimental progress is needed to understand our results.
Our newly developed lab with 15.3 T wide bore magnet and dilution temperature
capabilities will be perfect place to study QHFM. Experiments at lower temperature
will certainly shed more light on the nature of Skyrmions and their localization. For
example, the NMR signal from nuclei “under” localized Skyrmions might be possible
to detect at lower temperatures.

Our data suggests that both Skyrmion-Skyrmion interaction and disorder may be
important. Recently, several authors [59, 91, 92, 93, 94] considered disordered QHFM.
For strong disorder, they found that QHFM is replaced by the quantum spin glass
and the v = 1 ground state is no longer spin polarized [94]. Experiments on samples

with different disorder will be essential to check this prediction.
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Chapter 4

OPNMR studies of v=1 state

In Chapter 1 we briefly described how a strongly interacting 2DES in a large
magnetic field can be viewed in terms of CF in a reduced field. One of the most
suprising implementations of this idea was put forth in the seminal work of Halperin,
Lee, and Read [19], who argued that the ground state of the 2DES at Landau level
filling factor 1/:% is well-described by CF in zero net magnetic field, which therefore
exhibit a well-defined Fermi surface. Experiments carried out near 1/:% have provided
convincing evidence of the existence of the CF Fermi surface [25, 26, 95, 96, 97].

Despite the overall agreement between theory and experiment to date, several
fundamental issues about CF at I/I% have yet to be resolved experimentally. For
example, do CF form a Fermi gas, a “normal” Fermi liquid, or some kind of “un-
usual” Fermi liquid? Also, does the picture change when the ground state is only
partially spin-polarized [98, 99, 100]? Experiments which directly probe the electron
spin degree of freedom right at Z/Z%, especially near the transition between partially
and fully spin-polarized ground states, will help to answer these central questions.

In this chapter, we report OPNMR [63] measurements of the Knight Shift K5 and

the spin-lattice relaxation rate 1/T; of "'Ga nuclei in two different electron-doped

multiple quantum well (MQW) samples. The Kg data reveal the spin polarization
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Table 4.1: Different cases for our samples

Case | Sample By [T) 6 nlem™?  wlA] f
I 40W 7.03 38.3° 6.69x 1010 300 1.17
II 40W 9.92 0.0° 6.69x 1010 300 1.19

I11 10W 7.03 24.5° 7.75% 1010 260 1.20
IV 40W 12.0 46.4° 6.69x 1010 300 1.14
\Y% 10W 12.0 36.8° 7.75% 1010 260 1.18

P(T)= % while the 1/T; data probe the spin dynamics of the 2DES. Taken
together, these thermodynamic measurements provide unique insights into the physics
of CF at v=1. This work made use of earlier studies of » = } state in these samples
[73, 74] which made the Knight shift a calibrated measure of the P(T).

In Section 4.6, we compare our data with the predictions of a weakly-interacting
composite fermion model (WICFM) for Kg and 1/T4, described in Sections 4.4-4.5.
In the course of this dissertation, a mistake in the theoretical expression for 1/T; was
pointed out to us by R. Shankar. This correction doesn’t change our conclusion that
WICFM fails to describe our data. We present Sections 4.5—4.6 with the old formula

for 1/T; as in our publication. In Appendix A, we derive the correct expression for

1/T; and in Section 4.7 we compare our 1/T; data with that expression.

4.1 Three Different Cases for v =

The two samples used in this work were previously studied [73, 74] near v=:.
Using the rotator assembly, we could set the angle # between the sample’s growth axis
and the applied field By so that the filling factor v=nhc/eB; (with B =Bi,cos0)
equalled ; for cases I-III and 1 for cases IV and V (see Table 4.1).

The maximum Knight shift for a fully polarized 2DES is known for each sample,

KES! = Kgin(v=3,T—0), in cases IV and V (see Fig.4.1). In order to calculate the
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electron spin polarization at v=1%, we need to know K5=!(v=3) for cases I-III, which
is different from Kgin;(v=3%,T—0) because the three dimensional density in the center
of the quantum well, p(0), changes slightly as we tilt the sample or change Biy. In
the case of non-interacting electrons and infinitely high potential barriers, the 3D
electron density is given by 22 cos®(rz/w), for |z| <w/2. T. Jungwirth calculated the
p(z) for our experiments (Fig.4.2), using the density functional theory [101]. For all
five cases in Table 4.1, we provided f = E%%ﬁ’ which is the ratio of 3D density in

the center of the quantum well for non-interacting electron to p(0) from the density

functional calculations. Now, we can calculate KZ3!(v=3) for cases I-III:

1. K&EElMf(v=1)
K'P1;1 v=2)= Sint 3 4.1
Sint ( 2) f(l/ — %) ( )
And, the electron spin polarization P is obtained using:
1 KSlnt(V - laqj)f(’/ = l)
Plv==-,T)= 2 2 (4.2)
2 KSmt ( %)

4.2 Knight Shift Data at v =

DO

ll——\

Figure 4.3 shows OPNMR spectra at v=23 and T ~ 0.5 K, for Cases I-III (a-c, solid

Aw

lines). For Case I, all spectra (e.g., Fig.4.3(a)) are well-described by the same two-
parameter fit (dotted lines) [73, 74] that was used for all spectra at v=1 and v=3. This
fit is generated under the assumption that all spins are delocalized, so that (S, (v, T)),
averaged over the NMR time scale (~ 40 usec), appears spatially homogeneous along
the plane of the wells, and thus the resulting lineshape is “motionally-narrowed” [61].

In contrast, for Cases II and III, the well resonance (Fig. 4.3(b,c)) is much broader
than the same fit (dotted lines). An additional gaussian broadening of just the
well resonance leads to a better fit (dashed lines). The full width at half maxi-

mum (FWHM) of the additional broadening extracted from these fits is plotted in
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Figure 4.1: Knight shift dependence on temperature, measured for samples 10W
(open symbols) and 40W (filled symbols) at y:% (with Bioy = 12 Tesla, 04ow=46.4°,
and 61ow=36.8°). Insets show the saturation regions with Kgs(T—0)= 9.03 kHz for
sample 40W and Ks(T—0)= 11.79 kHz for sample 10W. This corresponds to K& '=
10.12 kHz (sample 40W) and K%-!= 12.88 kHz (sample 10W). Adapted from [73].
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Figure 4.2: For Sample 10W at v=1/3 in B;;=12T, the three dimensional density,
p(2'), calculated using density functional theory (solid line), the cosine squared wave-
function for a particle in an infinite well Z2cos?[r(z' — w/2)/w] (dashed line), and

28 0082[m (2 — wess/2) /Wesy] (solid line). The latter almost completely overlaps with

Wef f
the density functional solution over a wide range of z. For sample 10W, wes; = 307A
and w = 260A under these conditions. For this case f = "’—juiﬁ ~ 1.18.

Fig.4.3(d) for Cases II and III. In Chapter 3 we already encountered spectra which
were also poorly described by the “motionally-narrowed” lineshape, but in that case
the extra well width was sharply temperature-dependent. In Appendix B we present
subsequent %°Ga OPNMR measurements which show that the extra broadening is due
to quadrupole coupling of the nuclei to an electric field gradient which is sometimes
present in the sample due to strain. The extra broadening is not noticable in case I,
since the tilt angle §=38.4° is closer to the magic angle (54.7°). In later measurements
we managed to get rid of strain by regluing the sample and proved that the extra

broadening doesn’t affect the polarization measurements (see Appendix B).
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Figure 4.3: "'Ga OPNMR spectra (a-c, solid lines) at uzé, T ~0.5K. The dotted
line fits (a-c) use a 3.5 Khz FWHM Gaussian broadening (due to nuclear spin-spin
coupling) of the intrinsic well and barrier lines. The dashed line fits (b,c) require an
extra Gaussian broadening of “W” with the FWHM shown in (d) for samples 40W

(open circles) and 10W (filled diamonds).
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Figure 4.4(a) shows Kg(T) at v=3 for Cases I-III. Using an empirical relation (all
in kHz) Kgin = Ks+1.1x(1—exp(—K5s/2.0)), we can convert Kg into Kgin, which is
the intrinsic hyperfine shift for the nuclei in the center of each well, and is a direct
measure of the electron spin polarization P [73]. For Cases II and III, the same values

of Kgini(T) are also obtained directly from the dashed line fits (e.g., Fig. 4.3(b,c)).

4.3 The Electron Spin Polarization at v = % — Data

Figure 4.4(b,c) shows that P(v=z,T) does not saturate down to our base temper-
ature of 0.29 K, in contrast to earlier measurements at v=1 and -;; [34, 73]. Moreover,
as the temperature is increased, P(v,T) falls off much faster at V:% than at v=1 or
3 (e.g., at Tz=|g"eBiot/kpl, P(v=1,Tz) ~93%, while P(v=1,Tz) ~40% (Fig.4.5).
Here g*=-0.44, p. is the Bohr magneton and kp is the Boltzmann constant). Quali-
tatively, these results are consistent with a tiny (or vanishing) energy gap for spin-flip
excitations at 1/:% for Cases I-III. However, a quantitative understanding of the
P(v=%,T) data remains a challenge for theory (e.g., we cannot explain the crossing
of the Case I and Case II data sets at T~Ty; (Fig.4.4(b))).

Even though saturation is not observed, the Knight shift data for Case II are
evidence for a yz% ground state in which the electrons are only partially spin-
polarized (i.e., P(v=3,T — 0)~75 — 85%). This inference is consistent with data
obtained from two other experiments in conditions similar to those of Case II. From
their time-resolved photoluminescence measurements, Kukushkin et al. [99] estimate
P(v=3,T — 0)~87% at 5.52T. Surface acoustic wave measurements of Willett et
al. obtained a Fermi wave vector which was ~ 90% of the theoretical value for fully

polarized CF, consistent with a polarization of at least P(v=5,T — 0) ~ 62% [25].
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Figure 4.4: Temperature dependence at v=3 of (a) K and (b, ¢) P for Case I (filled
symbols), Case II (open circles), and Case III (open diamonds). Note the error bars
in (b,c). The solid and dashed curves are described in the text.
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4.4 The Electron Spin Polarization at v = { — Ini-

tial Models (NICFM and WICFM)

As our measurement were nearly complete, Kukushkin et al. [99] published
their measurements of P(v = 2, T ~ 0). In their analysis, the transition to a fully
spin-polarized CF ground state, as B increased, was consistent with the simple non-
interacting composite fermion model (NICFM).

In the NICFM, the dispersion relations for spin-up and spin-down states are:

h2k? h2k2
T Bulk) = 5 + Ba(T), (4.3)

Ey(k) = 5

where the Zeeman energy is given by:
Ez(T) = |g" e Bsos| = kpTz . (4.4)

Note, that at ¥ = 1, CF orbital degree of freedom “sees” zero magnetic field, while

|

spin couples to the field in the usual way, producing the Zeeman term.

The electron spin polarization P is:

MmN (4.5)
g +ny

ny and n; are 2D densities of spin-up and spin-down CF respectively:

dE

ny = ) 4.6
f /0 27Th2exp(%,ﬂ)+l (46)

and
© m* dE
o 2mh? exp(M—zTM(ﬂ) +1

n¢:

where % is the 2D density of states and u(T) is the chemical potential, which can

be calculated using:

ny +ny =n. (4.7)
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Using Eqgs. 4.5-4.7, we calculate p(T") and P(T'):

Ey

p(T) = kgTln(—y + /72 + exp(a) — 1) + - (4.8)
1+ exp[4D)
P(T) = ! In( ﬂ;p ivd ) (4.9)
o 1+ exp[kBT (1—=46(T7)))
where
_ Ey . 2mhin
7 =cosh(gom), o= T
and
Eg
T = —=.
) w(T)

Noting the similarity to an electron Fermi liquid, Nick Read suggested that we
try a simple modification of NICFM, which we call a weakly-interacting composite

fermion model (WICFM). In this model Eq. 4.4 is substituted by:

Ez = E3(T) = |g* e Biot| + Egxen = ksTz + kg JP(T). (4.10)

When J = 0, this is just the non-interacting composite fermion model. When
J > 0, there is a Stoner enhancement of the spin susceptibility. The chemical potential
p and the polarization P in this model are given by Eq.4.8-4.9 if we substitute E
by E3(T).

The solid curves in Figure 4.4(b,c) are two parameter fits to the T<T, data using
expressions for P(v=1,T') derived within WICFM. Equations 4.8-4.9 with E%(T) in
place of Ez (Eq.4.10) are solved self-consistently for P(T) at each m* and J to fit
our data. Within this WICFM, the behavior of P(T') as T—0 is quite sensitive to the
parameter 6(0). The ground state is only fully polarized (P(0)=1) when 6(0)>1. We
find 6(0) <1 for Cases II and III, 6(0)>1 for Case I, and the dashed curve illustrates an
even larger §(0) (Fig. 4.4(b,c)). Thus, within this model, the best-fit curves for Cases

IT and III yield partially-polarized ground states, while Case I is fully-polarized.
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Figure 4.6: k; — k, plot of the states which are occupied in the WICFM model for
(a) spin up and (b) spin down electrons. Schematic of the dispersion relations and
occupation numbers for the WICFM model shown for the spin up and spin down
electrons under (c) cold and (d) hot temperature conditions. is varied. Note that in
the WICFM model, the effective Zeeman energy drops as the temperature is increased.
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Clearly, it is possible to fit each separate data set using WICFM. However, as
we show below, the best fitting parameter values (J,m*) for different data sets don’t

agree with each other.

4.5 Measurements of the Nuclear Relaxation Rate
1/T,

Figure 4.7 shows the temperature dependence of the "*Ga nuclear spin-lattice
relaxation rate 1/T; at u:% for Cases I and II. At each temperature, OPNMR spec-
tra were acquired using a series of dark times 10s < 7 < 2560s (i.e., the longest
Tp > 4T1). The valu‘e of 1/Ty was determined by fitting the signal intensity at the
“W” peak frequency to the form S(mp) = Spexp (—7mp/T1) + Si1. Note that these
T < Tz relaxation rates are faster than the rate at 7'~ T for v=1 [47]. Qualitatively,
this shows that there is a greater overlap of the density of states for electrons with
opposite spins at v=1 than at v=1.

The isotropic Fermi contact hyperfine coupling between the electron spins and
the nuclear spins is responsible for both Kg and 1/T; [34, 47, 73, 74], as is the case
for some metals [61, 102]. Within the WICFM, 1/T(v=3,T) for " Ga nuclei in the

center of the quantum well is :

1 w(m)? fKEZ\2 kT
T, & ( n ) 1+ exp [(1AD(6(T) - 1)) 1)

This expression is used as a two-parameter fit to the 1/T;(T") data (Fig. 4.7, solid
lines), where p(T) and 6(7") are obtained from Eqns. 4.8-4.10 for each m* and J. The
behavior of 1/T1(T") as T'— 0 is also quite sensitive to the parameter 6(0). In Fig. 4.7,
we illustrate §(0) < 1 with the dotted curve, §(0) =1 with the dashed curve, and we
find 6(0) > 1 for Cases I and II (solid curves). In contrast to normal metals, here kpT

can be greater than p(0). Note, that Eq. 4.11 is incorrect, see Section 4.7.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- Casell ©

"

00
!

1/T, (10" s

Casel o

o<
0.0 0.5 1.0K

Temperature (K)

Figure 4.7: Temperature dependence of the "*Ga spin-lattice relaxation rate 1/T; at
v=1 for Case I (filled symbols) and Case II (open symbols). The solid and dashed

curves are described in the text.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.6 Failure of WICFM to Fit Our Data

Figure 4.8 shows the best values of J and m* obtained for each data set in
Figs.4.4(b,c) and 4.7. The correlation between J and m* is shown by Ax?=1 and
Ax*=4 contours. These (J,m*) values lie quite close to the curves which mark the
transition between fully and partially polarized ground states (i.e., where 4(0)=1).
There is negligible overlap between the contours and the line J=0, so the non-
interacting composite fermion model used by Kukushkin et al. [99] does not work
here. Moreover, there is no (J,m*) pair which can simultaneously describe the four
data sets measured using the same sample and B, (Fig.4.8 (main)), so we conclude
that even the weakly-interacting composite fermion model is a poor description of
the u:% state for these Cases. The most glaring inconsistency is that of Case II,
where 6(0)<1 (i.e., partially-spin polarized at T=0) is inferred from P(T’), which is
incompatible with the result §(0)>1 (i.e., fully-spin polarized at T=0) that is inferred
from 1/T(T).

Figure 4.8 (inset) shows the (J,m*) values obtained from the P(T") data for Cases
I and III. These values do not agree, however, sample 10W and 40W also have slightly
different electron densities and well widths (n,w). This would affect our results, since
we expect kpJ x eB)/m* x Ec(\) = 62/(6\/m), where loz\/m is the
magnetic length, e=13, and the parameter A\ = iw modifies the Coulomb energy
scale due to the non-zero thickness w of the quantum well [105]. To correct for this,

the Case III (J,m*) values are rescaled using:

J{(nmr, wm) nm N 4 + Tnpw?

J(npw) \\ﬂ(‘l‘*‘ﬂnlllw%n)

m*(npwr) ﬁL( 4 + mnwi ) (4.12)
m* (N, win) ni M + Tnmwdy

The rescaled contour has a good overlap with the (J,m*) values for Case I (Fig.4.8

(inset)). This rescaling is irrelevant for Fig.4.8 (main), where the results on a single
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Figure 4.8: Values of J (in Kelvin) and m* (in units of the electron mass in vacuum,
me), obtained using a x? analysis of : (main) P(T) (circles) and 1/T(T') (squares)
for Case I (dashed contours) and Case II (solid contours), and (inset) P(T') for Case
I (dashed contour) and Case III (thick solid contour). The thin solid contour in the
inset shows the rescaled Case III values described in the text. Within the WICFM,
the ground state is fully spin-polarized for (J,m*) values that lie above the thin solid
curve (Case I), thick solid curve (Case II), or dashed-dotted curve (Case III, inset).
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Figure 4.9: Comparison of our data to a recent theory by R. Shankar [103, 104]
that uses the Hamiltonian theory of Composite Fermions [28, 29, 30] with one fitting
parameter A to describe the v=1/2 state.
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Figure 4.10: Dispersion relations using the theory by R. Shankar [103, 104] for par-
ticles at v=1/2 at T=0.01K with B;;=B,=>5.52T. The chemical potential is also
shown. Note that the lower dispersion curve is more flat at small £ than the upper
dispersion curve and cannot be fit with just a quadratic form.
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sample are shown.

Neither a non-interacting nor a weakly-interacting composite fermion model is
sufficient to explain our experiments, which probe the electron spin degree of freedom
right at yz%. However, a recent theoretical approach by R. Shankar [103, 104] that
uses the Hamiltonian theory of Composite Fermions [28, 29, 30] is in a much better
agreement with our data. Shown in Fig. 4.9 is a plot of our data shown before (Figs. 4.4
and 4.7) compared to the predictions of this theory using a single parameter A. Also
shown in Fig.4.10 are dispersion relations generated by this theory for particles at
v=1/2 at T=0.01K with B,,=B;=>5.52T. Note that the lower dispersion curve is
more flat at small £ than the upper dispersion curve and cannot be fit with just a
quadratic form.

In conclusion, Knight shift and 1/T; data, taken together, provide important new
constraints on the theoretical description of the v = % state. Finally, in addition to
fully polarized ground states (Case I, Eff‘—r°'1z—=().021), partially spin-polarized ground

Ec(A)

states (Cases II and III, %:0.017 and 0.019) are experimentally accessible.

4.7 Corrections due to the new 1/T; formula

In Appendix A, we derived the correct expression for Til in the center of the

quantum well:

1 _ dm(m*)? (flv = %) K& \2 ksT

where §(7T") and u(T') are from Eq. 4.8-Eq. 4.10.

Fig.4.11(a) shows two-parameter fits to the 1/T; data, using Eq. 4.13. The agree-
ment between the data and fits is worse than in Fig.4.7. In Fig.4.11(b), we plotted
function Eq. 4.13 with the best values J and m*, obtained by fitting the spin polariza-

tion data (see Figs. 4.4 and 4.8). Clearly, the best values of J and m* for polarization
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Figure 4.11: Temperature dependence of the spin-lattice relaxation rate 1/T; at v =
for Case I (filled symbols) and Case II (open symbols). The solid and dashed lines in
(a) are fits to Case I and Case II respectively, using Eq.4.13. In (b), Eq.4.13 gives
the solid line obtained with m*=1.49m, and J=0.54K (best fit parameters for Case
I polarization data) and the dashed line obtained with m*=0.80m, and J=2.52K
(best fit parameters for Case II polarization data).
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Ax?=1 and Ax?=4 are plotted around each coordinate pair (J, m*).
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data don’t agree with the relaxation measurements.

We also remade the contour plots in Fig. 4.8 using the correct form of 1/T; for-
mula (Eq.4.13) in Fig. 4.12. There is no overlap between contours, and the agreement
between pairs of J and m obtained from polarization measurement and from relax-
ation measurements is even worse than in Fig. 4.8. The Ax?=1 and Ax?>=4 contours
for 1/T; data are stretched along J axis, giving high uncertainty for this parameter.

In the end, we come to the same conclusion as before, that WICFM fails to

describe our data.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5

Surprises in NMR of silicon

5.1 Introduction

The abstract idea of quantum computation (QC) has stimulated an intensive effort
to identify viable qubits in a wide variety of physical systems. While new schemes
continue to be proposed, the practical realization of QC is expected to be limited to
those systems that meet certain restrictive requirements [106], such as qubits with
“long” decoherence times, and designs which may be scaled-up to contain “large”
numbers of qubits. Given these requirements, proposals for QC based upon spins in
semiconductors [106, 107, 108, 109, 110, 111] appear to have great potential, includ-
ing the ability to take advantage of the existing infrastructure of the semiconductor
industry.

Measurements of the spin dynamics of the ?°Si nucleus (4.67% natural abundance

" (n.a.), spin—%) are relevant to many of these proposals, whether the silicon spins are the
qubits [111], or just the environment surrounding other qubits (such as a 3'P nuclear

spin [107, 108], or an electronic spin [110], etc.). We carried out a series of NMR
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measurements that were motivated by a simple question: what is the 2°Si decoherence
time (73) in silicon? Previous NMR studies of silicon emphasized different physics,
such as: the doping-dependence of the spin-lattice relaxation time (71) [112], nuclear
polarization enhancement by optical pumping [66], and the metal-insulator transition
induced by doping [113].

We find that it is possible to detect the 2Si (4.67% natural abundance (n.a.),
spin-%) NMR signals out to much longer times than was previously thought possible,
and so far, we have been unable to explain these results in terms of well-known NMR
theory [61]. Surprises in such a simple spin system appear brand new to NMR, and
understanding their origin is of fundamental importance. In this chapter, we describe
the phenomena and recount tests we have made to explore possible explanations.

Two standard experiments that measure Ty are reported. First, using the Hahn
echo sequence (HE: 90X-(%)-180y-(%5)-ECHO [114]), the measured decay, with
T, ~ 5.6 msec, is in quantitative agreement with that expected for the static °Si-
29Gi dipolar interaction. This decay mechanism is commonly encountered in solids,
and a number of ingenious pulse sequences have been invented to manipulate the
interaction Hamiltonian, pushing echoes out to times well beyond T5,,,, [61, 115, 116,
117,118, 119, 120, 121, 122, 123]. A common thread running through those sequences
is the use of multiple 90° pulses, and pulses applied frequently compared to T3, .,
which refocus the homonuclear dipolar coupling. The same cannot be said about the
second sequence that we used to measure T3, the Carr-Purcell-Meiboom-Gill sequence
(CPMG: 90x-{(*E) -180y-(ZE)-ECHO} ereetn-times [124]). Specifically, the CPMG
sequence is not expected to excite echoes beyond T5,, ., since 180° pulses should not
affect the bilinear homonuclear interaction. This statement is exact in two important
limits: either for unlike spins or for magnetically-equivalent spins.

Therefore, we were surprised to find that CPMG echoes are detectable long after

Ty, ., and the echo peaks appear nearly identical in silicon samples with very differ-
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ent dopings. This CPMG “tail” appears to be even larger at low temperatures. In
addition, as the interpulse spacing (TE) is increased, the CPMG echoes develop a
pronounced “even-odd asymmetry” (e.g., long after spin echo #1 (“SE1”) is in the
noise, spin echo #2 (“SE2”) is clearly observable). Lastly, we show how an “anoma-

lous stimulated echo” is observed in this system, with several peculiar characteristics.

5.2 NMR Pulse Sequences

Figure5.1 shows spectra for different silicon samples used in our experiment.
Sample a has p-type doping, while samples b-d have n-type doping. Note, that a
doping concentration change from sample b (10'® cm™3) to sample d (10 cm™®)
produces dramatic change in the NMR linewidth, 77 and skin depth 4.

The ?°Si spin dynamics are characterized by many time scales, e.g. Ty, Ty, T3,
which may be measured using different NMR pulse sequences. An upper bound on
T, is given by Ty, which we measured using the saturation-recovery sequence: SAT-
Tree-90x-DET. SAT is a pulse train used to zero the magnetization, which is followed
by recovery time 7,.., and then by an rf pulse with tip angle 90° and phase “X”
[61]. This rf pulse excites a free induction decay (FID) that is recorded during the
detection period DET. The height of the Fourier-transformed FID for sample d is
plotted versus 7y in Fig. 5.2. An exponential fit to the data yields 77=4.840.2 sec at
RT. The same measurement at T=4.2 K yields 77=340+30 sec, consistent with the
Korringa law [61]. This sets an upper-bound on the T of 2Si spins in this sample.

A lower-bound on T3, known as T3, is the time scale characterizing the FID,
as seen at the left edge of Fig.5.2(b). To probe dynamics in between Ty and T,
we set Tre.>T1 (so the 90x pulse acts on an “equilibrium” system), and then apply
additional pulses. For example, the Hahn echo sequence is: 90 X—(IiE—)-18Oy-DET

[114]. The 180y pulse refocuses the spins into an echo that peaks at a time TE after
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Figure 5.1: Room temperature (RT) 2°Si NMR spectra are shown for four samples
(a—d) with different doping, full width half max (FWHM), skin depth (8), and spin-

-2 0 2
Frequency from 59.484MHz

lattice relaxation time (77). These measurements are in a 7.027 Tesla field (B | 2,

with f, = 59.484 MHz).
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Figure 5.2: Room temperature (RT) ?Si NMR measurements in sample d. (a) A
saturation recovery experiment yields 77 = 4.8 4 0.2 sec. (b) The spin echo decay
depends upon the pulse sequence. The Hahn echoes (dots) from seperate measure-
ments decay faster than the train of echoes (peaks) obtained with a single CPMG
measurement (TE =~ 1.14 msec). The theoretical 75 decay using Eq. 5.4 is the solid
line.
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Figure 5.3: Two standard measurements of the 2°Si 75 in powdered silicon at room
temperature (RT). CPMG echo trains are shown for samples (a—d). Since samples a,
b, and ¢ exhibit much wider echoes than sample d, only the top portion of their echoes
are visible. Hahn echo measurements (circles with crosses for sample d, others are
supressed for clarity) agree quantitatively with the dipolar decay curve (solid line)
calculated for the silicon lattice (Eq. 5.4, see text). Despite big changes in doping
(e.g., x10°% in P-concentration between samples b and d), the peaks of the CPMG
echoes are nearly identical to each other, and they are detectable long after the Hahn
echoes decay to zero.
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the 90x pulse. Figure5.2(b) shows the height of a series of Hahn echoes plotted versus
TE, where each point is a separate experiment.

Figure 5.3 shows CPMG echo trains acquired in four different silicon samples (both
n-type and p-type). As Fig. 5.1 shows, the ?Si NMR spectrum (0.3 kHz<FWHM<3
kHz), the echo shape, and the 7; (from 4.8 sec to 5.5 hours at RT) can be quite
different, for samples with wide variations in doping [125]. Despite these big changes
(e.g., x10% in P-concentration), the peaks of the CPMG echoes are nearly identical
to each other, and they persist long after the Hahn echoes have died away.

Qualitatively, the long tail evokes a well-known effect in liquid-state NMR, where
diffusion causes slow changes in the local field leading to an extrinsic, faster decay
of the Hahn echoes [61]. Applying frequent refocusing pulses renders the dynamics
“quasi-static”, enabling the CPMG echoes to persist to longer times, and revealing
the intrinsic 75. However, in our data, the Hahn echoes appear to persist out to the
“Intrinsic” T, curve, and the CPMG echoes are observed beyond even that limit, as

we now show.

5.3 Theoretical Description

A theoretical decay curve may be calculated and compared to the experiments
in Fig. 5.3, starting from a general spin Hamiltonian for 2°Si in doped silicon. For

example, for sample d, we have:
H = Hiap + Hoogi_295; + Hoogi_ap + Hzogi e, (5.1)

where Hq includes the magnetic coupling of 2°Si spins to both the static laboratory
field and the time-dependent tipping field produced by the rf pulses. Since *Si is
fairly dilute (4.67% n.a.), Haeg;_29; is just the direct dipolar coupling. The last two

terms, Haog;_s1p and Haeg; .-, play the role of the “bath” for the #*Si spins, which
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produce static magnetic shifts and determine 7). In principle, the dynamics of this
bath might also affect our 75 measurements. However, Fig. 5.3 shows that this is not
the case, since samples a—d have nearly identical CPMG tails despite very different
baths. This is strong empirical evidence that the 2°Si homonuclear spin-spin coupling
is sufficient to describe the physics of all four samples (a-d), which greatly simplifies
the model. Therefore, in the rotating frame, the secular part of Eq. 5.1 (in the absence

of rf pulses) is H,, given by [61]:

Nspzns Nsptns
H, Z@ LAY {oss Lo Loy (1 Lt ij)}) (5.2)
j>t

where Q; is the magnetic shift for spin i (relative to on-resonance spins), a;; =

Q%}Q——[l — 3cos?8;;] (¥ is the gyromagnetic ratio for #Si), and b;; = —52. The
vector between spins i and j, 7j;, satisfies 7j; - 2 = 74 cos ;5.

If some of the terms in Eq. 5.2 are truncated, corresponding to specific physical
limits, then analytic solutions for the effect of various pulse sequences may be found
using the product operator formalism [61, 126]. We start from the initial equilibrium

density matrix:
Nspins

x Y I, (5.3)
which assumes the conventional strong field and high temperature approximations
[61].

For “unlike spins”, where |a;;| < AQ;; = |Q; — Q;], we truncate the b;; terms [61].
In this limit, the peak of the kth CPMG echo decays according to:

(Iy(k x TE)) ZI Teos <M>} (5.4)

>i

which assumes the “infinite H; limit”. Experimentally, 2221 ~22kHz, |5£]<0.8 kHz,
|$%|<0.3 kHz for samples (a—c) and |$%|<3 kHz for sample d. Eq.5.4 also describes

a free induction decay (FID) following a single 90x pulse in another limit: all the b,
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terms are truncated and all Q; = 0. Thus, the truncated dipolar decay of the CPMG
echoes for the case of “unlike spins” is apparently unaffected by the 180y pulses,
which flip all I,, — (—I,;), leaving the sign of the bilinear a;; terms unchanged. In
order to compare Eq.5.4 to the data, we only need to have realistic values of a;;
for our powder samples. To obtain these a;;, we built 20,000 “chunks” of the real
silicon lattice with arbitrary orientations, and determined the ~80 nearest neighbors
occupied according to the 4.67% n.a.. Averaging Eq. 5.4 over all “chunks” [125] yields
the black curve shown in Fig. 5.3, which agrees remarkably well with the Hahn echo
data points, but which fails to describe the measured CPMG echoes.

It is unusual to have such a clean, simple sample, such that the “predicted 75"
due to static term in the Hamiltonian is what you measure. Typically, adding in the
“environment” or 2°Si-3!'P interaction will only serve to shorten T5.

When CPMG experiments are carried out in liquids, the well-known echo mod-
ulation due to J-coupling between unlike spins can be effectively turned off [127], if
pulses are applied so frequently that ﬁ»JU and ﬁ»AQij. Similarly, in our solid-
state measurements, applying a CPMG sequence with frequent pulses (i.e., small TE)
might push the system artificially into the “like spin” regime, where |a;;|>A€);;. In
that limit, all the terms of Eq.5.2 should be retained. This precludes an analytic
solution, but numerical calculations of (Iy(t)) can be carried out for small numbers
of spins, including the required ensemble averaging [125]. These calculations show
that the initial decay of the CPMG echoes in that limit should be ~ %— faster than
Eq. 5.4, which agrees with the well-known second moment expressions [61, 128]. Our

data require another explanation.
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Figure 5.4: CPMG echo trains at 4.2 K for sample d with TE of (a) 1.12 msec, (b)
2.65 msec, and (c) 11.23 msec. The solid line from Fig. 1 is scaled to intercept the
first echo in each graph. The numbered echoes in (c-d) exhibit a pronounced even-
odd asymmetry, which emerges for TE > T3, .. (d) shows the same effect in Si:Sb
(sample c¢) at RT with well-calibrated pulse angles, low repetition rates, and a narrow
spectrum.
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Figure 5.5: The free induction decay (FID) and first two spin echoes (SE1, SE2)
excited by a CPMG sequence at RT for sample d with TE of (a) 30 msec and (b) 60
msec. The insets show the narrow shape and the height of SE2 in comparison with
SE1 (the FID starts at 14600). At 60 msec, SE2 (a) is clearly different from SE1 (b).
Solid bars indicate pulses.
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5.4 Even-Odd Asymmetry

To see if the long tail was due to some kind of multiple-pulse spin locking [116],
we increased the interpulse spacing (TE), which led to another unexpected result.
Fig. 5.4 (a-c) shows data taken at 4.2 K for three different TE in sample d. The long
tail persists even for TE > T, . Interestingly, for large interpulse spacings, the odd-
numbered echoes are much smaller than the even-numbered echoes. At RT, samples
a—d exhibit the same even-odd asymmetry as TE is increased (e.g., as in Fig. 5.4(d)).

This even-odd asymmetry leads to remarkable results as TE is increased still
further. Figure5.5 shows the FID and first two spin echoes acquired in a CPMG
experiment with n = 2, for very long TE. In Fig.5.5(a) TE/T5,, = 5.35 so that SE1
is tiny relative to the FID. Surprisingly, SE2 (at 2xTE /T3, , =~ 10.7) is nearly three
times the height of SE1; SE2 is also narrower than SE1. In Fig. 5.5(b), TE is doubled,
which pushes SE1 into the noise, while SE2 is clearly visible, even though it occurs

21.4xTy,,, after the 90x pulse.

5.5 Anomalous Stimulated Echo

Since SE2 is the first echo to occur after three pulses, we decided to look for a
contribution to the CPMG echoes that is reminiscent of a stimulated echo [114], using
the sequence: 90 X—(%)-180y-TM-180y-DETECT, where TE and TM can be varied
independently. Using this sequence, we detect a conventional spin echo SE2 that
peaks at total time 2 x TM, along with an “anomalous stimulated echo” (STE4) that
peaks at TM+TE (see Fig.5.6). Figure5.7 shows the height of the STE,4 as either
TM or TE is varied. There are several remarkable features of the data in Fig.5.7: 1)
we observe STE 4, even for our best 180y pulses, where there should be none, 2) they

decay slowly as TE or TM are increased, 3) they appear to “start” at non-zero values
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Figure 5.6: Echoes from three pulse experiments. The first echo (SE1) on the left is
the echo from first two pulses, the last echo (SE2) is from SE1 and a third pulse and
the echo in the middle is STEa which is presumably due to all three pulses. Note,
that STEa decays very slowly, compared to SE2. Time is counted from the 90x pulse.
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Figure 5.7: “Anomalous stimulated echo” amplitudes at RT for sample d. Filled
squares (TE~0.4 msec) are plotted vs. TE+TM. Empty circles (TMa210 msec) and
triangles (TM=~21 msec) are plotted vs TE. The solid line is from Fig.5.3. (Inset)
The signal does not appear to grow from zero.
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at the left edge of Fig.5.7, and 4) the data set has a larger scatter than expected,

given the signal to noise of each individual data point.

5.6 Experimental Nonidealities

Given the results in Figs. 5.3-5.7, we have tried to minimize the effects of nonide-
alities commonly reported in multiple pulse NMR, [61, 122, 123]: (i) inhomogeneous
Hy, (ii) finite-size Hy, (iil) a “spin locking” effect, and (iv) phase transients [122]. For
(i), the nutation curve (Fig.5.8) is a qualitative measure of H; homogeneity. In our
experiment, the ratio of the FID signal after 810° pulse to the FID signal after 90°
pulse is 0.93 which is much better than in most of NMR experiments. Also the results
in Figs.5.3-5.7 are unchanged if we use a tiny (~ 6% ) coil filling factor, or samples
of very different skin depths. For (ii), the same effects are seen in all samples, even
though H;/FWHM changes by factor of 10. For (iii), similar results are obtained
with an alternating phase Carr-Purcell sequence, where 180° pulse phases alternate
between“—X” and “X”, even though the average H; is quite different from that of
CPMG. Finally, we expect that (iv) becomes less important as the number of pulses
is reduced and their spacing is increased, so we don’t see how this could explain the

puzzling results of Figs. 5.5-5.7.

5.7 Conclusions

Taken together, these results strongly suggest that the effects are due principally
to the 2°Si homonuclear dipolar coupling. In that case, why is it so hard to find a
quantitative explanation for the data? The form of Eq. 5.2 for a clean silicon sample
is one problem, since many spins may have |a;;| ~ AQ;;, which make simulations

[125] particularly challenging [129]. The dilution of the moments on the lattice could
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Figure 5.8: The nutation curve: the amplitude of the Fourier-transformed FID signal
versus the length of the rf pulse. The first maximum corresponds to 90° pulse and
the next crossing with zero corresponds to 180° pulse. Slow decay of the amplitude
envelope is due to rf inhomogeneity.
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be another issue [130, 131]. The strange features in Fig. 5.7 (in particular, point 3),
and the narrowness of SE2 in Fig.5.5 seem to be beyond the conventional theory
of solid-state NMR. In recent NMR experiments [132, 133], large polarizations have
produced measurable dipolar field effects, which led some to question the approxima-
tions underlying Eq.5.3. While we don’t have such large polarizations, the form of
Eq. 5.4 could change if Eq. 5.3 is replaced by another starting point.

In the broader context of QC, the generic form of Eq. 5.2 suggests that similar sur-
prises may be found in other systems with small, long-range, qubit-qubit interactions,
particularly when “bang-bang” control is used [134]. Understanding these phenomena
in silicon may help to prevent similar surprises from imposing a performance limit on

quantum computers in the future. Additional experiments are underway [125].
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Appendix A

71? Calculation

The general expression for the nuclear spin-lattice relaxation rate %1 is given by

[61]:
_1__ . lzm,n Wmn(Em - En)2
Tl - 2 Z’n E721 ’

where E,, and E,, are nucleus energies and W,,, is the probability per second of a

(A1)

transition of the system from m to n.
In our case, T process is dominated by the hyperfine interaction between a nucleus

and electrons:

He—n = %T'fyerYnhQZisj 6(R—rj) y (Az)
J

where . and 7, are the gyromagnetic ratios for electrons and nucleus located at

positions r; and R respectively. Now, W,,, can be calculated:

Wmn = Z kas,nk’s’f(k7 8)[1 - f(k’S,)L (A3)
ks;k's’

where f is the Fermi distribution function and
2
Wonks s = —g—}(mksme_nlnk’s’)ﬁé(Em + B — By — By),  (Ad)

is the probability per second of a transition |mks) to |nk’s'), where k is the CF

wavevector and s is the electron spin.
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The wave function in Eq. A.4 is given by:
|mks) = |m)]|s) uk(r, 2) e**, (A.5)
where r and k are along 2D plane and z is perpendicular to it. wuy contains all the

necessary factors to normalize the total wavefunction.

Using Eq. A.2—-A.5 for the nucleus in the center of coordinates, (R = 0) we have:

4
W = 22 22t st o) 3 (el olTe ) 18415 <151
x /0 F(B)1 = f(Buy + Em — Ey))p(Bx)p(Bic B,
Ek/:Ek+E3~E;+Em_Ena p(Ek):Lhza
p(Ekl) = h2 for Fy > 0 and p(Ekl) =0 for Fp < 0, (A6)

where S is the sample area. In order to get Eq. A.6, we replaced a summation
over k and k' in Eq. A.3 by an integral, using the density of states p(Fx) and assumed
that uy(0) is independent of k.

We can replace f(Ewy+E,;,—E,) by f(Ew) since E,,— E, is very small compared
with electron energies. It is clear from Eq. A.6 that terms with s=s’ in Eq. A.6 are
nonzero only for m=n and they don’t contribute to Til (Eq. A.1) . Let us consider the

integral in Eq. A.6 for s=1 and s'=|:

Ii= ()" - HEB)L - (E)aE. (A7)

where we used that Ey,=Fy=F, Exg =FEw+E,=FE and Exy =E—E}, E} is the

effective Zeeman energy from Eq.4.10. For s=| and s'=1 the integral is the same:

In = ()’ [~ £+ B[ - (B + B3)JdE = Ly (A.8)
Now, we can write Eq. A.6 as:
Wonn = S (m" 222" u(0) 3 (mlTaln)rnlr ) o155 1Sl
< [, SENL - f(E)dE (A.9)
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Since the integral in Eq. A.9 is independent of s and s’ we can evaluate the spin

suIn.

>_(51Sals")(s'|Sw|5) = D (5|SaSals)

= Tr(SuSy) = wés<s+1)(25+1) _ %500,. (A.10)
Now, we have:
w. _ 16_7T *\2 2 252 0 4 I I
mn = oy (m*)? ZvaS?u(0)]* Y- (mlIa|n)(n]Ism)
- ~ . All
< [ @R~ f(BE (A.11)

Substitution of Eq. A.12 in Eq. A.1 gives us:

1 167

(m* Y A2 O [ F(B)1L~ F(EdE

T 9h
2
sz,n,a(mllalg)gifgl;n)(f?m En)® (A.12)
The expression:
)2
S e a|) (1) La|m) (Bm — En) (A.13)

23 EZ,

is evaluated in Slichter to be unity. Therefore the nuclear spin-lattice relaxation rate
is given by:

1 167

7 = 5, () RSOl [ F(E)L  F(E)dE. (A14)

In order to use Eq. A.14 to fit our data, we can evaluate |u(0)| from the maximum
Knight shift for our experiments at v = -é— The maximum effective hyperfine magnetic

field on the nuclei at R =0 can be calculated using Eq. A.2:
8w 5 4 2
Ben = (159 2 8; 8(x;)lr) = - N yehlu(0) )%, (A.15)
j

where 14 is the wavefunction for fully polarized electrons and N is the total number

of electrons. The Knight shift in the center of the quantum well for fully polarized
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elecrons is given by:

_ 1. 2
K5 (v =3) = 22 Bon = 2N mehlu(0) . (A.16)

Therefore |1u(0)|? can be evaluated:

2 _ 3K§i§€(” = %) _ 3f(v= %) K;‘)iitl

w(0)|? = - . A.17)
[u(0) 2NYu el 2f(v = 3)Nymyeh (
After evaluating integral over Fermi functions in Eq.A.14 and using [u(0)|* from
Eq. A.17 we obtain the final formula for 7- in WICFM:
*)2 = 1y KP=1
i P 477-(7737/ ) (f(l/ 3)1 Sint )2 k;?T , (A-18)
T, h fv=3n 7 1+exp R (5(T) - 1))

where §(T') and p(T') are from Eq.4.8-Eq. 4.10.
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Appendix B

The Origin of the Extra

Broadening in v = %— Experiments

In Chapter IV, we mentioned that for Cases II and III of our v = % experiments we
needed an extra gaussian broadening to explain the OPNMR lineshape. To investigate
the origin of this effect, we performed *Ga OPNMR measurements for Case I1.

For nuclear species with spins 7> 7, such as "'Ga, %°Ga (both are spin J=3%),
the electric quadrupole moment @) of the nucleus couples directly to the electric
field gradient VE= Vap at the nuclear site. The corresponding contribution to the

Hamiltonian can be expressed as [61, 62]:

——eQ____ 2 72 _ 2 g2
HQ—M(QI_I)[V“(MZ, )+ (Vow — V)2 = 12)] . (B)

where the second term in the square brackets vanishes if V4 is axially symmetric,

which we further assume for simplicity. Using first order perturbation theory, we

calculate the energy levels:

20
B, = v hBym + eQVy, <3cos -1

TOIT) . ) [3m?-1(I+1)] (B.2)
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Figure B.1: ®Ga OPNMR spectrum at v=3, T=x0.5K. The “W” signal is split
into the three lines due to the quadrupole coupling. The signal from the barrier is
suppressed by the choice of short 7.

The above equation shows that m = :i:% levels are shifted by the same amount
and the transition between them is unaffected, while the frequency of transitions: —%
— -1 and 1 — 2 are now different from each other and the central transition. In the
presence of the electric field gradient, NMR spectrum for I = -3— nuclei has three lines.

Figure B.1 shows ¥Ga OPNMR spectrum for similar conditions as in Fig. 4.3(b),
where "' Ga OPNMR spectrum exhibited extra broadening. **Ga nucleus has a bigger
value of the electric quadrupole moment (0.17 x 10~842) than %*Ga nucleus (0.11 x
1078A42), which makes ®*Ga spectrum more sensitive to the gradient of the electric
field. This observation makes us conclude that the additional broadening of the "'Ga

OPNMR spectra for Cases II and III is due to the unresolved quadrupole splitting.

'The absence of this broadening for Case I can be explained by the large tilt angle of
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Figure B.2: Temperature dependence for Case I of '!Ga Kg with extra breadth (open
circles) and after regluing the sample (filled circles). Also %°Ga K data is shown
(filled triangles) which is scaled by the gyromagnetic ration "v/%%y in order to be
compared with "'Ga data.
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§=38.4° which decreases the (3cos?f—1) term in Eq. B.2.

For a perfect GaAs crystal, which has a cubic symmetry (V,, =V,, =V,,), the
electric field gradient is zero, since ¥, Vae = VE = 0. But .any strain that may be
present in the sample would break the symmetry and thus cause a nonzero electric
field gradient. In the subsequent experiments, we carefully reglued the samples and
managed to get rid of quadrupole effects. Fig. B.2 shows Knight shift measurements
for Case II before and after regluing the sample. It illustrates that our measurements

were not affected by the weak strain in our sample.
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Appendix C

Search for an NMR Signal from
Gaj_,Mn; As

Here, we present our attempt to find an NMR signal from an epitaxial layer of a
Dilute Magnetic Semiconductor (DMS) Ga;_.Mn_As. It is one of the most promising
DMS that can be used in magnetic devices [135, 136].

Our sample was grown by MBE at Notre Dame and it had a 6% Mn concentra-
tion (x=0.06). The sample consisted of four alternating layers of Ga;_,Mn,As upon
a GaAs substrate. Each substrate layer was 600 microns thick and each Ga;_,Mn_ As
layer was 3 microns thick. Direct measurements of the magnetization M as a func-
tion of temperature have been made for Ga;_,Mn,As using SQUID (Superconduct-
ing Quantum Interference Devices) and these measurements show that the sample
exhibits a finite magnetization even for vanishing magnetic field at low enough tem-
peratures [135]. This temperature (T,) depends primarily upon the concentration of
the Mn atoms in the sample and SQUID measurements conducted by the Notre Dame
group for our sample revealed its T, to be at 50K. The spontaneous magnetization of
Gaj-;Mn,As is surprising, since Mn atoms typically alien antiferromagnetically. In

this case, it is suspected, that spins of mobile, valence-band holes couple to the spins of
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the Mn atoms antiferromagnetically, causing the Mn spins to align ferromagnetically.
This means that Ga;_,Mn_ As is not actually a ferromagnet but a ferrimagnet.

NMR studies can shed more light on the mechanism of the ferrimagnetism in this
important semiconductor. Our efforts to detect an NMR signal from any of the nuclei
(Ga, Mn or As) in the Ga;_,Mn,As epitaxial layer were not successful. The search
for Ga and As NMR signals from Ga;_,Mn,As was complicated by the huge NMR
signal from GaAs substrate. We investigated temperatures from 60K (above T.) to
4K and didn’t find any signal except for the signal from GaAs substrate. Another
approach was to look for zero-field NMR signal from manganese nuclei. From ESR
measurements [136], we estimated that the hyperfine magnetic field on Mn nuclei is
~ 36.6 Tesla, which corresponds to the NMR frequency of 386.7 MHz. We investigated
the frequency region between 370 MHz and 400 MHz very carefully ( with a step of
500 kHz or better ) with both FID and spin echo techniques and did not detect an
NMR signal. We also applied external magnetic field ( 0.1 Tesla and 12 Tesla) to
alien possible magnetic domains and narrow the NMR linewidth but still didn’t find
any NMR signal.

Our failure to detect the Mn NMR signal from Ga;_,Mn;As is not surprising,
given the overall difficulties of the project. First of all, the number of manganese
nuclei in our sample is ~ 8 x 10'7, which is usually below the sensitivity level of
NMR. Second, the NMR parameters (11, T3, NMR linewidth) are not known a priori.
The usual attributes of NMR in ferromagnets [137]: the huge hyperfine field and
a possible amplification of NMR can certainly boost the signal, but the typically
large linewidth can make the signal undetectable with our equipment. The most
straightforward improvement of our experiments would be to increase the number of
manganese nuclei in our sample. This could be achieved either by growing thicker
Ga;_;Mn,As layers or by etching off GaAs substrate and stacking more layers in the
NMR coil.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

[1] K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).

[2] The Quantum Hall Effect, 2nd ed., edited by R. E. Prange and S. M. Girvin
(Springer-Verlag, New York, 1990).

[3] T. Chakraborty and P. Pietildinen, The Quantum Hall Effects: Integral and
Fractional, 2nd ed. (Springer-Verlag, Berlin, 1995).

[4] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College,
Philadelphia, 1976).

[5] H. L. Stérmer, Physica B 177, 401 (1992).

[6] C. Weisbuch and B. Vinter, Quantum Semiconductor Structures : Fundamentals

and Applications (Academic Press, San Diego, 1991).

[7] D. Heiman, in The Spectroscopy of Semiconductors, Vol. 36 of Semiconductors
and Semimetals, edited by D. G. Seiler and C. L. Littler (Academic Press,
London, 1992).

[8] R. B. Laughlin, Phys. Rev. B 23, 5632 (1981).
[9] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).

[10] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[11] F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983).

[12] S. M. Girvin and A. H. MacDonald, Phys. Rev. Lett. 58, 1252 (1987).
[13] S. C. Zhang, T. H. Hansson, and S. Kivelson, Phys. Rev. Lett. 62, 82 (1989).
[14] J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).

[15] J. K. Jain, Phys. Rev. B 40, 8079 (1989).

[16] A. Lopez and E. Fradkin, Phys. Rev. B 44, 5246 (1991).

[17] D. H. Lee and M. P. A. Fisher, Phys. Rev. Lett. 63, 903 (1989).

(18] N. Read, Phys. Rev. Lett. 62, 86 (1989).

[19] B. L. Halperin, P. A. Lee, and N. Read, Phys. Rev. B 47, 7312 (1993).
[20] N. Read, Semicond. Sci. Technol. 9, 1859 (1994).

[21] N. Read, Phys. Rev. B 58, 16262 (1998).

[22] R. B. Laughlin, Phys. Rev. Lett. 60, 2677 (1988).

[23] J. K. Jain and R. K. Kamilla, in Composite Fermions, edited by O. Heinonen
(World Scientific, Singapore, 1998).

[24] S. H. Simon, in Composite Fermions, edited by O. Heinonen (World Scientific,

Singapore, 1998).

[25] R. L. Willett, R. R. Ruel, K. W. West, and L. N. Pfeiffer, Phys. Rev. Lett. 71,
3846 (1993).

[26] R. L. Willett, K. W. West, and L. N. Pfeiffer, Phys. Rev. Lett. 75, 2988 (1995).

[27] A. E. Dementyev et al., Phys. Rev. Lett. 83, 5074 (1999).

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[28] R. Shankar and G. Murthy, Phys. Rev. Lett. 79, 4437 (1997).

[29] G. Murthy and R. Shankar, in Composite Fermions, edited by O. Heinonen
World Scientific, Singapore, 1998).
g

[30] G. Murthy and R. Shankar, Rev. Mod. Phys. 75, 1101 (2003).
[31] B. 1. Halperin, Helv. Phys. Acta 56, 75 (1983).
[32] S. M. Girvin, cond-mat/9907002.

[33] S. L. Sondhi, A. Karlhede, S. A. Kivelson, and E. H. Rezayi, Phys. Rev. B 47,
16419 (1993).

[34] S. E. Barrett et al., Phys. Rev. Lett. 74, 5112 (1995).

[35] Y. A. Bychkov, S. V. Iordanskii, and G. M. Eliashberg, JETP Lett. 33, 143
(1981).

[36] C. Kallin and B. I. Halperin, Phys. Rev. B 30, 5655 (1984).

37] M. Abolfath et al., Phys. Rev. B 56, 6795 (1997).

[38] H. A. Fertig et al., Phys. Rev. B 55, 10671 (1997).

[39] K. Lejnell, A. Karlhede, and S. L. Sondhi, Phys. Rev. B 59, 10183 (1999).

[40] Soliton and Instantons, edited by R. Rajaraman (North Holland, Amsterdam,
1982).

[41] S. M. Girvin and A. H. MacDonald, in Perspectives in Quantum Hall Effects,
edited by S. D. Sarma and A. Pinczuk (Wiley, New York, 1997), Chap. 5.

[42] H. A. Fertig, L. Brey, R. Coté, and A. H. MacDonald, Phys. Rev. B 50, 11018
(1994).

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[43] E. H. Aifer, B. B. Goldberg, and D. A. Broido, Phys. Rev. Lett. 76, 680 (1996).
[44] M. J. Manfra et al., Phys. Rev. B 54, 17327 (1996).

[45] A. Schmeller, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett.
75, 4290 (1995).

[46] D. K. Maude et al., Phys. Rev. Lett. 77, 4604 (1996).
[47] R. Tycko et al., Science 268, 1460 (1995).

[48] Y. Q. Song, B. M. Goodson, K. Maranowski, and A. C. Gossard, Phys. Rev.
Lett. 82, 2768 (1999).

[49] V. Bayot et al., Phys. Rev. Lett. 76, 4584 (1996).
[50] V. Bayot et al., Phys. Rev. Lett. 79, 1718 (1997).

[51] S. Melinte, E. Grivei, V. Bayot, and M. Shayegan, Phys. Rev. Lett. 82, 2764
(1999).

[52] L. Brey, H. A. Fertig, R. C6té, and A. H. MacDonald, Phys. Rev. Lett. 75,
2562 (1995).

[53] A. G. Green, I. I. Kogan, and A. M. Tsvelik, Phys. Rev. B 54, 16838 (1996).
[54] R. Coté et al., Phys. Rev. Lett. 78, 4825 (1997).

[55] M. Rao, S. Sengupta, and R. Shankar, Phys. Rev. Lett. 79, 3998 (1997).

[56] M. Abolfath and M. R. Ejtehadi, Phys. Rev. B 58, 10665 (1998).

[67] Y. V. Nazarov and A. V. Khaetskii, Phys. Rev. Lett. 80, 576 (1998).

[58] C. Timm, S. M. Girvin, and H. A. Fertig, Phys. Rev. B 58, 10634 (1998).

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[59] A. J. Nederveen and Y. V. Nazarov, Phys. Rev. Lett. 82, 406 (1999).
[60] P. Khandelwal et al., Phys. Rev. Lett. 86, 5353 (2001).

[61] C. P. Slichter, Principles of Magnetic Resonance, 3rd ed. (Springer, New York,
1990).

[62] A. Abragam, Principles of Nuclear Magnetism (Oxford Univ. Press, New York,
1961).

[63] S. E. Barrett, R. Tycko, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 72,
1368 (1994).

[64] Perspectives in Quantum Hall Effects, edited by S. D. Sarma and A. Pinczuk
(Wiley, New York, 1997).

[65] L. N. Pfeiffer et al., Appl. Phys. Lett. 61, 1211 (1992).
[66] G. Lampel, Phys. Rev. Lett. 20, 491 (1968).

[67] Optical Orientation, edited by F. Meier and B. P. Zakharchenya (Elsevier, Am-
sterdam, 1984).

[68] H. D. M. Davies, R. L. Brockbank, J. F. Ryan, and A. J. Turberfield, Physica
B 256, 104 (1998).

[69] R. L. Brockbank, H. D. M. Davies, J. F. Ryan, and A. J. Turberfield, Physica
E 6, 56 (2000).

[70] N. N. Kuzma, Ph.D. thesis, Yale University, 1999.
[71] P. Khandelwal, Ph.D. thesis, Yale University, 2001.

[72] E. Fukushima and S. B. W. Roeder, Ezperimental pulse NMR: A Nuts and
Bolts Approach (Addison-Wesley, Reading Massachusetts, 1991).

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(73] P. Khandelwal et al., Phys. Rev. Lett. 81, 673 (1998).
(74] N. N. Kuzma et al., Science 281, 686 (1998).

[75] D. Paget, G. Lampel, B. Sapoval, and V. I. Safarov, Phys. Rev. B 15, 5780
(1977).

[76] I. V. Kukushkin, K. v. Klitzing, and K. Eberl, 1999.

[77] N. Read and S. Sachdev, Phys. Rev. Lett. 75, 3509 (1995).

[78] M. Kasner and A. H. MacDonald, Phys. Rev. Lett. 76, 3204 (1996).
[79] R. Haussmann, Phys. Rev. B 56, 9684 (1997).

[80] C. Timm, P. Henelius, A. W. Sandvik, and S. M. Girvin, Phys. Rev. B 58, 1464
(1998).

[81] A. H. MacDonald and M. Kasner, private communication.

[82] J. Sinova, S. M. Girvin, T. Jungwirth, and K. Moon, Phys. Rev. B 61, 2749
(2000).

[83] E. G. Nikolaev, J. Witteveen, M. de Kok, and H. B. Brom, Phys. Rev. B 55,
8717 (1997).

[84] H. A. Fertig, private communication.

[85] B. Paredes and J. J. Palacios, Phys. Rev. B 60, 15570 (1999).
[86] H. Fukuyama and P. A. Lee, Phys. Rev. B 17, 535 (1978).
[87] M. C. Cha and H. A. Fertig, Phys. Rev. Lett. 73, 870 (1994).

[88] A. 1. Larkin and Y. N. Ovchinnikov, J. Low Temp. Phys. 34, 409 (1979).

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[89] J. H. Ross, Z. Wang, and C. P. Slichter, Phys. Rev. Lett. 56, 663 (1986).

[90] W. H. Wong, M. E. Hanson, B. Alavi, and W. G. Clark, Phys. Rev. Lett. 70,
1882 (1993).

[91] M. M. Fogler and B. I. Shklovskii, Phys. Rev. B 52, 17366 (1995).

[92] J. Sinova, A. H. MacDonald, and S. M. Girvin, Phys. Rev. B 62, 13579 (2000).

(93] G. Murthy, Phys. Rev. B 64, 241309 (2001).

[94] S. Rapsch, J. T. Chalker, and D. K. K. Lee, Phys. Rev. Lett. 88, 036801 (2002).

[95] W. Kang et al., Phys. Rev. Lett. 71, 3850 (1993).

[96] V. J. Goldman, B. Su, and J. K. Jain, Phys. Rev. Lett. 72, 2065 (1994).

[97] J. H. Smet et al., Phys. Rev. Lett. 77, 2272 (1996).

[98] R. R. Du et al., Phys. Rev. Lett. 75, 3926 (1995).

[99] 1. V. Kukushkin, K. v. Klitzing, and K. Eberl, Phys. Rev. Lett. 82, 3665 (1999).
[100] K. Park and J. K. Jain, Phys. Rev. Lett. 80, 4237 (1998).

[101] T. S. Lay, T. Jungwirth, L. Smrcka, and M. Shayegan, Phys. Rev. B 56, 7092
(1997).

(102] J. Winter, Magnetic Resonance in Metals (Oxford University Press, London,
1971).

[103] R. Shankar, Phys. Rev. Lett. 84, 3946 (2000).
[104] R. Shankar, Phys. Rev. B 63, 85322 (2001).

(105] F. C. Zhang and S. D. Sarma, Phys. Rev. B 33, 2903 (1986).

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[106] D. P. DiVincenzo and D. Loss, J. of Magnetism and Magnetic Materials 200,
202 (1999).

[107] B. E. Kane, Nature 393, 133 (1998).

[108] B. E. Kane, Fortschr. Phys. 48, 1023 (2000).

[109] V. Privman, I. D. Vagner, and G. Kiventsel, Phys. Lett. A 239, 1141 (1998).
[110] R. Vrijen et al., Phys. Rev. A 62, 012306 (2000).

[111] T. D. Ladd, J. R. Goldman, F. Yamaguchi, and Y. Yamamoto, Phys. Rev. Lett.
89, 017901 (2002).

[112] R. G. Shulman and B. J. Wyluda, Phys. Rev. 103, 1127 (1956).

[113] R. K. Sundfors and D. F. Holcomb, Phys. Rev. 136, A810 (1964).

[114] E. L. Hahn, Phys. Rev. 80, 580 (1950).

[115] J. G. Powles and P. Mansfield, Phys. Lett. 2, 58 (1962).

[116] E. D. Ostroff and J. S. Waugh, Phys. Rev. Lett. 16, 1097 (1966).

[117] W. K. Rhim, A. Pines, and J. S. Waugh, Phys. Rev. Lett. 25, 218 (1970).
[118] W. K. Rhim, A. Pines, and J. S. Waugh, Phys. Rev. B 3, 684 (1971).

[119] J. S. Waugh, L. M. Huber, and U. Haeberlen, Phys. Rev. Lett. 20, 180 (1968).
[120] P. Mansfield, J. Phys. C 4, 1444 (1971).

(121] W. K. Rhim, D. D. Elleman, and R. W. Vaughan, J. Chem. Phys. 58, 1772
(1973).

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[122] U. Haeberlen, High Resolution NMR in Solids: Selective Averaging, Vol. Sup-
plement 1 of Advances in Magnetic Resonance (Academic Press, New York,

1976).

[123] M. Mehring, High Resolution NMR in Solids, 2nd ed. (Springer-Verlag, Berlin,
1983).

[124] S. Meiboom and D. Gill, Rev. Sci. Instrum. 29, 6881 (1958).

[125] D. Li, A. E. Dementyev, K. MacLean, and S. E. Barrett, in preparation (un-
published).

[126] O. W. Sorensen et al., Prog. Nucl. Magn. Reson. Spectrosc. 16, 163 (1983).

[127] R. Freeman, Spin Choreography: Basic Steps in High Resolution NMR (Oxford
University Press, Oxford, 1998).

(128] J. H. V. Vleck, Phys. Rev. 74, 1168 (1948).

[129] A. Allerhand, J. Chem. Phys. 44, 1 (1966).

[130] E. D. Fel’"dman and S. Lacelle, J. Chem. Phys. 104, 2000 (1996).
[131] S. Lacelle and L. Tremblay, J. Chem. Phys. 102, 947 (1995).

[132] W. S. Warren, W. Richter, A. H. Andreotti, and B. T. Farmer, Science 262,
133 (1993).

[133] S. Lee, W. Richter, S. Vathyam, and W. Warren, J. Chem. Phys. 105, 874
(1996).

[134] L. Viola and S. Lloyd, Phys. Rev. A 58, 2733 (1998).

[135] H. Ohno and F. Matsukura, Solid State Communications 117, 179 (2001).

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[136] O. M. Fedorych, E. M. Hankiewicz, Z. Wilamowski, and J. Sadowski, Phys.
Rev. B 66, 045201 (2002).

[137] E. A. Turov and M. P. Petrov, Nuclear Magnetic Resonance in Ferro- and
Antiferromagnets (Halsted Press, New York, 1972).

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



