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Since its invention in 1973, magnetic resonance imaging (MRI) has become an invalu-

able tool for clinical medicine, fundamental biomedical research, the physical sciences,

and engineering. The vast majority of all MRI studies, in medicine and beyond, de-

tect only the signal from a single nuclear isotope, 1H, in liquid water. Extending the

reach of MRI to the study of other elements, and to hard or soft solids, opens new

frontiers of discovery. In practice, however, the slower motion of the nuclei in solid

environments compared to 1H in water results in much broader magnetic resonance

(MR) spectra, limiting both the attainable spatial resolution and the signal-to-noise.

Our lab recently discovered a novel nuclear magnetic resonance (NMR) pulse sequence

while doing fundamental research related to the ‘spins in semiconductors’ approach to

quantum computing. This sequence can greatly narrow the MR linewidth of solids,

and it opens a new path to do high-resolution MRI of various nuclei in solids. In this

thesis work, I use our quadratic echo line-narrowing pulse sequence to take the high-

est resolution MR images of 31P in hard and soft solids using a conventional animal

MRI system. I also discuss strategies to accelerate the imaging speed by making use

of sparse MRI techniques as well as a new algorithm developed in our lab to do fast

and accurate image reconstruction from sparse data. For future work, I propose ways

to enhance spatial resolution and speed up imaging as well as discuss the potential

applications of this work to a wider range of scientific problems.
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Chapter 1

Introduction

Since Paul Lauterbur’s first attempt at magnetic resonance imaging (MRI) in 1973,

MRI has sky-rocketed in popularity to become a cornerstone for many diagnostic

biomedical procedures and remains the best technique to do non-invasive in vivo imag-

ing of soft tissue. MRI still provides an active research arena which attracts a wide-

range of researchers: from chemists developing contrast agents that highlight specific

organs to mathematicians using information theory to develop faster imaging methods

by making use of randomly sparse data sets. Despite the plethora of MRI research

being done, the vast majority of imaging is still looking at just a single nuclear isotope,

1H, in water.

The reasons for such a seemingly single-minded pursuit are as follows: (a) water is

abundant in biological tissues, (b) 1H has the largest magnetic moment of all naturally

occurring nuclear isotopes, and (c) the motion of liquid water naturally narrows the 1H

spectra as well as speeds up the imaging time, thus enabling faster and higher spatial

resolution imaging. There are many other nuclear isotopes which exhibit magnetic

resonance that could give different and complementary information about the particular

sample, but imaging using non-proton nuclei still requires several challenges to be
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overcome.

Along with having lower concentrations (e.g., in comparison to hydrogen in biolog-

ical samples), these other nuclei are often found in solid or soft-solid structures whose

slower molecular motion results in the signal decaying very rapidly (i.e., short T2) and

much broader magnetic resonant spectra, which hurt the available spatial resolution

and the signal-to-noise. The lack of fluctuating magnetic fields also leads to a long wait

time between experiments for the spins to equilibrate along the applied magnetic field

(i.e., long T1). Fortunately, the novel pulse sequence developed in our lab is well-suited

to make the magnetic resonance spectrum of a solid more like that of a liquid, and

appears to help remove the hurdle to do high spatial resolution imaging. Our lab has

also developed algorithms that can reconstruct very accurate images from sparse data,

offering a route to speed-up imaging of solids as well. Both these techniques combined

make MRI of nuclei in solid structures much more practical.
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Figure 1.1: A plot of the signal from a liquid-state (solid lines) or solid-state sample
(dashed lines), with and without applied magnetic field gradients.
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1.1 Review of the Field Prior to this Research

Due to all these challenges, there is not yet a standard method to use for MRI of solids.

Good reviews for the different techniques can be found in [1] and [2]. These different

imaging methods can be understood if we keep in mind a picture of what the signal

versus time looks like for a solid sample compared with a liquid sample, as shown in

figure 1.1. Here I will briefly discuss the various methods that have been pursued for

imaging solids prior to this work and how our proposed method differs. Details of the

relevant MR theory and experiments will be explored in later chapters.

1.1.1 Living with the Short T2 of Solids

The most common approach to MRI of solids try to deal with the short decay time (T2)

of the solid signal (as shown by the dashed lines in figure 1.1) by changing experimental

parameters and/or equipment to work around its inconvenience.

Single Point Imaging

Single point imaging (SPI) is the most common technique of imaging solids using MRI

- because it is a fairly straightforward extension of conventional liquid-state MRI. SPI

was first developed by Emid and Creyghton [3] and acquires a single point of the data

for each experiment as soon as possible before the solid signal disappears (which is often

< 500µs). Understandably, this method of imaging is very slow since only a single point

of data is being taken for each experiment, one has to wait the long T1 of solids before

repeating experiments, and images require thousands of data points. Also, in order to

get a nicely resolved image, very high gradient amplitudes and rapid on/off switching

of gradients need to be used. To speed up imaging as well as to avoid the need for

very fast gradient switching, the single point ramped imaging with T1 enhancement

3



(SPRITE) method was developed by Balcom, et al. [4]. In this method, the gradient is

ramped up in discrete steps so more points can be acquired in single experiment, and

the need for on/off gradient switching is limited. Small-angle pulses are also used so

one does not have to wait a full T1 before repeating experiments. However, the short

T2 of the sample ultimately determines how well this imaging method functions.

Less Commonly Used Methods

Other imaging of solids methods have been developed which try to get better resolved

images of solids by pushing the limits of the equipment and living with the short T2

of solids. One such method includes using much larger gradients so that the effect of

gradients can be seen on the rapidly decaying signal (as shown in the dashed, thin

line in figure 1.1). Stray-field imaging (STRAFI) makes use of the fringe field of large

superconducting magnets to provide the large static field gradients required. Initially,

the sample would have to be mechanically moved through the fringe field to build up

an image along one spatial dimension. More recently, this technique has been applied

with pulsed gradients [5] to eliminate the need for moving the sample. However, this

technique is still limited to planar samples where high-resolution is only desired along

one spatial dimension.

Some techniques use completely different equipment when imaging solids than when

imaging liquids. For example, continuous wave (CW) imaging makes use of continuous

radio frequency (rf) irradiation and detection in the presence of continuously applied

gradients while the external magnetic field is swept slowly through resonance [2]. Here

one does not need fast gradient switching times or high-power rf, but one would need

a customized system to sweep the magnetic field (instead of just using a large, static

field with smaller magnetic field gradients).

4



1.1.2 Making Solids Look More Like Liquids

Unlike the previous methods, these methods aim to make the solid signal look more

like liquid signal by extending the effective T2. The dashed lines then become more

like the solid lines in figure 1.1, and conventional liquid-state imaging techniques can

then be used. In order to make the solid-state signal more liquid-like, one must get rid

of the dipolar interactions (HZZ) in solids which naturally average to zero in liquids

due to molecular motion.

Magic Angle Methods

The ‘magic angle’ imaging methods were derived from NMR of solids techniques which

eliminate or decrease the dipolar interactions in the solid - the primary cause for the

short T2 time. These techniques make use of the ‘magic angle’ where the dipolar

interactions between two neighboring spins becomes zero.

The most common method, magic angle spinning (MAS), rapidly rotates the solid

sample at the magic angle so the dipolar interactions, as well as the anisotropic Zeeman

interactions, average out to zero [6]. The isotropic Zeeman interactions, however,

remain unaffected. In order to use MAS for imaging, one must have rotor synchronized

rotating gradients, which requires technically demanding hardware and limits on the

sample one can use.

Another method that makes use of the magic angle is magic-angle rotating-frame

imaging. Instead of mechanically rotating the sample, the dipolar and anisotropic

Zeeman interactions are eliminated by evolving spins around an effective radiofrequency

field in the magic-angle rotating frame [7]. However, this method also is technically

demanding of the equipment, because very precise gradients are needed to give the

magic angle condition. Due to the difficult set-up, thus far imaging has only been done

in one or two dimensions using this method.

5



Pulsed Line-Narrowing Approaches

Other imaging of solids approaches derived from solid-state NMR use pulsed line-

narrowing sequences to get rid of the effects of the dipolar interactions in solids. These

sequences are usually made of multiple 90◦ pulses to generate effective fields that make

the net dipolar interactions zero by using the fact that HXX + HY Y + HZZ = 0. The

most well-known pulse line-narrowing approaches are WAHUHA [8], MREV-8 [9], and

BR-24 [10]. Magic-Echo Imaging makes use of the magic sandwich echo pulse sequence

[11], which gets rid of the effect of dipolar interactions by reversing the sign of the

dipolar Hamiltonian.

These line-narrowing pulse sequences work best when there are no other interactions

other than dipolar interactions. These pulse sequences are less effective for samples

where other interactions are also prominent, for example, Zeeman interactions (HZ). In

order to do imaging, gradients need to be applied in between the line-narrowing pulse

blocks, so large amplitude gradients with very fast gradient switching are required.

1.1.3 Previous Work Imaging Bone

In this work, many of our results are imaging 31P in bone mineral. In bone there are

several different approaches imaging the short T2 proton signal from collagen and tightly

bound water in the organic bone matrix with a spatial resolution typically >400µm

but one recent article got resolution down to 56µm [12]. These approaches are various

modifications of the SPI approach, where data is acquired as soon as possible before

the solid signal disappears. These include WASPI developed by Wu, Ackerman, et

al. [13, 14, 15], UTE developed by Bydder et al. [16, 17, 18, 19], SWIFT developed

by Garwood et al. [20, 21], and ZTE developed by Weiger et al. which has given

the highest resolution thus far for hydrogen in ex vivo bone [12]. Only a few groups

6



have reported direct 31P imaging in bone, with one group reporting spatial resolution

of 0.5mm (but 2-5mm is more typical) [22, 23, 24, 25, 26]. In all these methods, the

spatial resolution is limited by the broad linewidth caused by the short T2 of 31P in

bone (< 200µs). One group has used a line-narrowing approach for 31P MRI in bone

by using a ‘solid echo’ to partially refocus the dipolar interactions and lengthen the

effective T2 to a few times longer than the actual T2 [27, 28]. This approach is limited

by the ineffectiveness of the solid echo to completely refocus the dipolar Hamiltonian

in bone mineral.

1.1.4 Our Method

Our method adopts the strategies of earlier line-narrowing approaches to the MRI of

solids, where one makes the spin dynamics of the solid look more like a liquid. The

key difference is that our pulse block uses a quadratic echo to refocus both the Zeeman

(HZ) and dipolar interaction (HZZ) terms in the spin Hamiltonian, and works best

in the limit where HZ ≥ HZZ . Our pulse sequence is thus a better choice for certain

samples (e.g. 31P in bone mineral, where HZ ≥ HZZ), and there is less need for strong

gradients and very fast gradient switching, since the gradients can be left on during

the pulse burst.

1.2 Products of this Research

In this thesis work, our new approach to the MRI of solids was implemented on the

Bruker 4 Tesla animal MRI system. We can do imaging using both Cartesian and

radial sampling, and have successful imaged 31P in bone mineral in various ex vivo

bone samples as well as 31P in many types of soft tissue. We currently have the highest

spatial resolution image of 31P in bone mineral, and the first image of 31P in soft tissue

7



where the signal is predominately from the cell membranes. Our lab also developed a

new, faster, and computationally efficient algorithm to reconstruct images from sparse

data to speed up imaging, and we currently are exploring its use beyond MRI.

1.3 Organization of the Remaining Chapters

The second chapter covers nuclear magnetic resonance (NMR) and MRI basics that

will be very useful for understanding the challenges of MRI of solids and our approaches

to overcoming these challenges.

The third chapter will briefly discuss the development of the quadratic echo line-

narrowing sequence and various designs of the pulse sequence to be used particularly

for MRI of solids.

The fourth chapter discusses in depth our application of the quadratic echo line-

narrowing sequence to provide high spatial resolution MR images of solids. Here I also

present our results imaging 31P in bone mineral and soft tissue.

The fifth chapter discusses our approach to overcome the slow imaging time by

making use of sparse sampling techniques and a novel algorithm to reconstruct high

quality data from sparse data.

The sixth and final chapter discusses potential uses of our technique for MR imaging

of solids, along with some preliminary data and final thoughts.
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Chapter 2

NMR and MRI Basics

In this chapter, I introduce the theoretical and experimental knowledge of NMR and

MRI that will be most helpful in understanding this dissertation work.

2.1 Basics of NMR

2.1.1 Larmor Frequency and Precession

Let’s begin by looking at the simple quantum system of a single nuclear spin (with

nuclear spin operator, ~I) in the presence of a static magnetic field, ~B0. This nuclear

spin has an associated magnetic moment, ~µ given by

~µ = ~γ~I (2.1)

where γ is the gyromagnetic ratio of the nucleus. The Hamiltonian for this system is

given by,

H = −~µ · ~B0. (2.2)
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We will choose a coordinate system such that the static magnetic field will be in the

z direction and only concern ourselves with spin-1
2

nuclei, so the allowed eigenvalues

of Iz are mI = ±1
2
. This results in the iconic two-level system, with energy splitting

given by

∆E = ~γB0. (2.3)

The distribution of nuclear spins between the two energy levels can be approximated by

Boltzmann statistics. In thermal equilibrium, the number of spins in the lower energy

level, NmI=+ 1
2

compared to the higher energy level, NmI=− 1
2

is given by

NmI=− 1
2

NmI=+ 1
2

= exp(−∆E/kBT ), (2.4)

where kB is Boltzmann’s constant and T is the temperature in Kelvin. For nuclear

spins, ∆E is so small compared to kBT for typical temperatures that there is only a

very slight bias in the spin distribution at thermal equilibrium. This leads to a very

small spin polarization, given by

P =
NmI=+ 1

2
−NmI=− 1

2

NmI=+ 1
2

+NmI=− 1
2

. (2.5)

Typical polarization values range from 10−4 to 10−5.

Photons with angular frequency equal to

ω0 = γB0 (2.6)

will resonate with this two-level system and cause transitions between the levels. This

special frequency is called the Larmor frequency, and note that it is directly propor-

tional to the magnetic field felt by the nuclear spin. This is the essential point behind
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MRI. We can encode spatial information into the measured frequencies by applying

spatially-dependent magnetic fields (usually linear field gradients).

2.1.2 Classical Approach to NMR

The dynamics of the magnetic moments ~µ of nuclei in the presence of a static mag-

netic field ~B0 can be easily understood through a simple classical analogue where the

magnetic field exerts a torque on the magnetic moment, which we will treat as a simple

bar magnet. This torque is given by the expression

~τ = ~µ× ~B0 (2.7)

If the magnetic moment is allowed to rotate freely, it would tend to align itself with

the applied magnetic field. However, our nuclear magnetic moments have intrinsic

angular momentum, given by ~J = ~~I. In classical mechanics, the change in the

angular momentum must be equal to the applied torque. The equation of motion for

the nuclear magnetic moment then becomes,

d~J

dt
= ~µ× ~B0. (2.8)

Using ~µ = ~γ~I = γ~J , we can rewrite this equation of motion to be

d~µ

dt
= γ~µ× ~B0. (2.9)

When ~µ is not perfectly aligned with ~B0, the magnetic moment moves in a direction

perpendicular to both the direction of ~µ and ~B0. We can think of the magnetic moment

of the nuclear spin moving on a cone with a constant angle (Φ) between ~µ and ~B0 (see

figure 2.1). The angular frequency of this precession is given by ω0 = γB0. Thus the
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Figure 2.1: Depicts the precession of the magnetic moment ~µ about the static magnetic
field ~B0 on a cone at a fixed angle Φ measured from the z axis (direction of the applied
magnetic field). Figure courtesy of Rona Ramos.

magnetic moment precesses around the applied magnetic field at the Larmor frequency

we found in the quantum mechanical description.

In NMR we measure this precession frequency in order to learn about the local

magnetic field environments of the nuclei we are observing. We measure this signal

by using a solenoidal coil positioned perpendicular to ~B0. The sum of the magnetic

moments in a unit volume gives some total magnetization, ~M . For example, if there

is a net polarization of the spins in equilibrium, then the total ~M is non-zero, and

aligned along the applied field. Once ~M is rotated away from the ~B0 direction by

a pulse, equation 2.9 tells use that it will precess about ~B0. We can measure the

precession of ~M by looking for the induced alternating voltage in our coil, due to the

time-varying magnetic flux through the loops. We get the strongest signal when we

have the largest ~M precessing in the xy plane. The typical experiment then goes as

follows: (1) Wait some time for spins to thermally equilibrate and polarize along ~B0.

(2) Use a 90◦ radio frequency (rf) pulse (often called the ’excitation pulse’) that knocks
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down the polarized spins into the xy plane. (3) Measure the induced voltage in the coil

caused by the precession of the spin magnetic moments. This is a free induction decay

(FID) experiment. Once the signal is acquired in the time domain, we take the fast

Fourier transform (FFT) in order to get a frequency spectrum of the signal. If all spin

magnetic moments are precessing at the same frequency, we see a very narrow spike at

the Larmor frequency. Variations on this basic frequency spectrum tells us about the

different local magnetic field environments of the spins we are observing.

Rotating Frame

To understand the effects of rf pulses on the spin magnetic moments, it is convenient to

analyze the spin dynamics in the frame rotating at the Larmor frequency [29, 30]. Since

the externally applied field, ~B0, is much larger in scale than the applied pulses and

residual internal fields of interest, it is very convenient to work in the frame that removes

the rather trivial dynamics caused by ~B0. In this rotating frame, spins precessing at

the Larmor frequency now appear to stand still.

In order to reorient spins polarized along the z axis into the xy plane (to maximize

signal measured in the xy plane), one can imagine applying a magnetic field (~B1) in

a direction perpendicular to z in this rotating frame. This static magnetic field in

the rotating frame is generated in the lab frame by a linearly polarized alternating

magnetic field caused by applying an alternating rf voltage through the solenoidal coil

at the Larmor frequency. In the lab frame, the linear magnetic field produced by the

coil can be regarded as two counter rotating fields with the same frequency. When

viewed in the rotating frame, the component that rotates in the same sense as the

rotating frame will look like a constant field, while the component that rotates in the

opposite sense will appear to precess at 2ω0. This counter-rotating field oscillates far

enough away from resonance that it typically has little effect on the magnetic moments
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and is therefore ignored.

The reorientation of the spins due to the magnetic field produced by the pulse, ~B1,

is called nutation. The amount of nutation depends on the pulse length (i.e. the time

the rf alternating voltage is applied) as well as the pulse power (determined by the

amplitude of the rf voltage and the quality factor of the coil circuit). We will denote

the most relevant pulse times through the variables T90 and T180, which gives the pulse

length for a 90◦ and 180◦ nutations, respectively. One can also control the direction of

the pulse in the xy plane by controlling the phase of the applied rf voltage. We often

will denote a pulse using an expression such as 90Y , which means the spins will be

nutated 90◦ about the y axis in the rotating frame.

Spin Relaxation

In the simple system discussed above, the precession of the magnetic moment would

go on indefinitely because there are no other sources for relaxation. In reality, there

are many possible sources to cause these quantum magnetic moments to decohere from

each other and eventually relax to the lowest energy state. These different relaxation

process are often characterized by two relaxation times, T1 and T2.

The T1 relaxation time characterizes the relaxation of the total magnetization ~M

back to the thermal equilibrium value for the system. This process involves spins

transferring energy to the environment to relax to the lower energy level. Thus, the

speed at which the magnetization along the direction of the applied magnetic field (Mz)

returns to its equilibrium value depends on the mechanisms available to transfer energy

from the spin system out to a possible energy reservoir (e.g. other nearby spin species,

translations, rotations, and vibrations of atoms, etc.) For these reasons, T1 is often

referred to as the spin-lattice relaxation time. In an FID experiment, this relaxation
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process is described by the simple equation,

Mz(t) = M0(1− exp(−t/T1)), (2.10)

where M0 is the longitudinal magnetization at thermal equilibrium and is given by

M0 =
1

2
~γ(NmI=+ 1

2
−NmI=− 1

2
). (2.11)

Thus, after an FID experiment, if you do not wait several T1’s for full re-equilibration,

the amplitude of the next FID signal (and the corresponding spectrum) will be reduced

below the equilibrium value. As a result, experiments in long T1 samples are either

slow, suffer from from poor signal-to-noise, or both.

The T1 relaxation time is often measured using either an inversion recovery experi-

ment (where spins are first initialized in the higher energy state through use of a 180◦

pulse and then allowed to relax back to thermal equilibrium) or saturation recovery

experiment (where the net magnetization is scrambled to be approximately zero and

then allowed to recover) [31].

The second relaxation time constant, T2, characterizes the decoherence of spins in

the transverse (xy) plane due to interactions in which there is no net energy transfer

from the spin system to the environment. One mechanism for T2 relaxation comes from

local fluctuations in the magnetic field at the site of the nucleus, often due to spin-

spin dipolar interactions or interactions with the local electronic environment. Due to

these fluctuations in the local microscopic magnetic fields, the nuclei precess at slightly

different rates. As the spins get more and more out of step with each other, they fan

out and point in all directions in the xy plane, causing the vector sum of the transverse

magnetization measured in our coil to decay to zero. This decay in the time domain

signal leads to equivalent broadening of the linewidth (proportional to 1/T2) in the
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corresponding frequency spectrum.

Given our description of T2 above, one plausible way to measure it is to look at the

decay of the signal after an FID experiment. However, the measured decay is often

faster than the pure T2 decay that tells us only about interactions with local microscopic

magnetic fields. This faster decay can be due to macroscopic field inhomogeneities in

the static field ~B0 itself or magnetic susceptibility effects in the sample. We label this

faster decay time measured in a FID experiment T ∗2 . One way to get rid of the effects of

these macroscopic field inhomogeneities is to start the FID experiment, but then add a

180◦ pulse some time τ after the excitation pulse which has the effect of refocusing the

effects of inhomogeneous magnetic fields to produce an echo at 2τ after the excitation

pulse. A depiction of this refocusing in the rotating frame is shown in figure 2.2. This

sequence is called the Hahn echo sequence, and is the conventional way to measure T2

by increasing τ and watching the subsequent decay in the echo peak amplitude [31, 30].

2.1.3 Relevant Spin Interactions

Here I will give the two relevant spin interaction Hamiltonians leading to T2 decay

that we will focus on in this work. The first is the Zeeman Hamiltonian, which is the

interaction of the nuclear spin with the local magnetic field due to both the external

field, ~B0, and any local magnetic field fluctuations at nuclear site i, δBi. In the lab

frame, the Zeeman Hamiltonian has the form

H lab
Z =

N∑
i=1

−~γ(B0 + δBi)Izi (2.12)

where Izi is the z-component nuclear spin operator for the ith nucleus. In the rotating

frame, this Hamiltonian reduces to only a single term containing the small Zeeman
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Figure 2.2: The Hahn echo pulse sequence and its resulting spin dynamics in the
rotating frame. After an initial 90X pulse, spins are precessing at frequencies evenly
distributed around the Larmor frequency. Here, the black spin is on-resonance, while
higher frequency spins are more blue, and lower frequency spins are more red. The
resulting decoherence leads to signal decay in the measured FID (which can also be seen
in the decreased size of the pink arrow, which is the total transverse magnetization,
My). After the 180Y pulse (or π pulse), the spins are flipped like a pancake about the
y axis and continue moving with the same sense as before, leading to refocusing of the
transverse magnetization. Increasing τ and watching the subsequent decay in the echo
peak amplitude gives a measurement for T2. Figure courtesy of Yanqun Dong.

shift, ΩZi
= −~γδBi. For the systems we are dealing with, ΩZi

is the same for a large

number of neighboring spins, so we can drop the index i. The Zeeman Hamiltonian in

the rotating frame is then given by

HZ =
N∑
i=1

ΩZIzi = ΩZIzT , (2.13)

where IzT =
∑N

i=1 Izi is the total Iz spin operator.

The second relevant interaction Hamiltonian is the homonuclear dipolar interac-

tion term, which is the spin-spin interaction between nuclei of the same type. This

interaction can be written in terms of the magnetic moments ~µi and ~µj correspond-
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ing to nuclei at the ith and jth site, respectively. In the lab frame, the full dipolar

Hamiltonian is

H lab
d =

N∑
i=1

N∑
j>i

[
~µi · ~µj
|~rij|3

−
3(~µi · ~rij)(~µj · ~rij)

|~rij|5

]
. (2.14)

In the rotating frame, this Hamiltonian can be greatly simplified [30] to give the secular

dipolar Hamiltonian

HZZ =
N∑
i=1

N∑
j>i

Bij(3IziIzj − ~I i · ~Ij), (2.15)

where the dipolar coupling constant, Bij, is given by

Bij =
1

2

γ2~2

r3
ij

(1− 3 cos2 θij). (2.16)

Here rij is the distance between the ith and jth spins (with distance vector ~rij) and

θij is the angle between ~rij and ~B0.

The rotating frame expressions for the Zeeman (HZ) and dipolar (HZZ) Hamilto-

nians will be the form assumed throughout this dissertation.

2.2 Basics of MRI

MRI uses the well-known techniques of NMR along with applied magnetic field gra-

dients - spatially varying magnetic fields - to encode spatial information about the

sample into the measured signal. In 1973, Paul Lauterbur published the first paper

[32] to show an MRI image (see figure 2.3). His sample was two test tubes of water

inside a beaker of D2O. By applying a magnetic field gradient (~G‖r̂), the 1D frequency

spectrum became a map of the total proton spin density along r̂ since the frequency at

which the spins were precessing depended directly on where the spins were located in

the magnetic field gradient. By taking many 1D spectra with the applied gradient in
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different directions (in a 2D plane), Lauterbur could then infer the 2D spatial locations

of his proton-dense test-tubes, giving him a 2D image.

Figure 2.3: Figure from Lauterbur’s original paper which had the first MRI image.
This shows his approach to resolve a 2D image via back-projection.

Today, the main idea is essentially the same, but now we have more sophisticated

ways to explain image acquisition and reconstruction, borrowed from solid-state physics

and introduced by Peter Mansfield. The most important techniques pertinent to this

work are explained in detail below.

19



2.2.1 k Space

The biggest element borrowed from solid-state physics is the idea of sampling ~k space,

which is the reciprocal space to the spatial image domain (i.e., ~k space corresponds

to the image space via Fourier transformation). While the data is still sampled in the

time domain (as in NMR), a change of variables leads to the picture that in MRI we

use magnetic field gradients to sample the ~k space domain. How this is done can be

easily understood by recalling the complex signal we are measuring in the rotating

frame can be described by

S(t) ∝
∫

~M⊥(~r)e−iφ(~r,t)d3r, (2.17)

where ~M⊥(~r) is the total magnetization in the transverse plane in the neighborhood of

point ~r and φ(~r, t) is the phase factor picked up by that magnetization (in the rotating

frame). This phase factor is given by,

φ(~r, t) = γ

∫ t

0

~r · ~G(t′)dt′, (2.18)

where ~G = (dBz/dx, dBz/dy, dBz/dz) is the applied magnetic field gradient (with

units of magnetic field over distance). Equivalently we can take this phase factor to

be 2π~k(t) · ~r to write it strictly in terms of the conjugate variables we want to use

for imaging (using the crystallographer’s convention for defining the reciprocal lattice).

That makes ~k(t) defined to be

~k(t) =
γ

2π

∫ t

0

~G(t′)dt′, (2.19)
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and we can rewrite the measured signal in terms of ~k as

S(t) ∝
∫

~M⊥(~r)e−i2π
~k(t)·~rd3r. (2.20)

As can be seen from equation 2.19, the integral of the gradient over time determines

our current location in ~k space.

2.2.2 Traversing k Space

The ~k-space trajectory is the path traced out by ~k(t). In NMR and MRI experiments,

data are sampled at discrete time values. We are then only filling discrete ~k-space

points along this trajectory when we are actively acquiring (sampling) data, but we

can still traverse ~k space when not acquiring data. This leads us to the two ways of

traversing ~k space which can be used together in a variety of different ways to acquire

the MRI data. The first is called phase encoding, where gradients are applied to move

to a particular position in ~k space, but no sampling of data has taken place. The

second in called frequency encoding, where gradients are applied while acquisition is

taking place, so we are sampling the magnetization at discrete ~k space points along the

~k-space trajectory. One does not need to use phase encoding to acquire the ~k-space

data, but many imaging sequences use it to choose an initial point to start the ~k-space

trajectory.

2.2.3 Sampling, Field-Of-View, and Spatial Resolution

Since we are making use of the Fourier transform to get the image from the acquired

~k-space data, let’s review the various relations between reciprocal spaces.

We are sampling N points in the time domain every δt (often called the dwell time)

for a total acquisition time ∆t = Nδt. The corresponding frequency domain will have
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N points with spacing δf = 1/Nδt = 1/∆t and a total bandwidth ∆f = Nδf = 1/δt.

If we expect the spectrum to be symmetric, centered at f = 0 with a width Lf in Hertz,

then the Nyquist-Shannon sampling theorem states we need to sample such that

δt ≤ 1

Lf
, (2.21)

otherwise the spectrum will be larger than the bandwidth and any signal outside the

bandwidth will be aliased back inside the bandwidth. This is because the Fourier

transform replicates the measured spectrum after every ∆f = 1/δt, so if Lf is wider

than ∆f , than the replicates overlap inside the bandwidth (aliasing the results).

We can write the equivalent formulas to the ones above for ~k space and image

space. For simplicity, I will only give formulas below for one-dimension, but equivalent

formulas exist for y and z directions as well. For uniformly-spaced frequency-encoded

~k-space sampling along the x direction, the spacing between sampled ~k-space points

is given by

δkx =
γ

2π
Gxδt, (2.22)

where Gx is the gradient amplitude in the x direction. If we have a sample of width

Lx in the x direction, then the Nyquist-Shannon sampling theorem becomes

δkx ≤
1

Lx
. (2.23)

The total field-of-view (FOV - the spatial extent of the image), ∆x, is given by

∆x =
1

δkx
=

2π

γGxδt
. (2.24)
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The spatial resolution of the image, δx, is given by

δx =
∆x

N
=

1

Nδkx
=

2π

γGxNδt
. (2.25)

One strategy to boost the spatial resolution (i.e. decrease δx) is to increase the

gradient amplitude, Gx. However, there is a maximum gradient amplitude allowed dic-

tated by the Nyquist-Shannon sampling theorem. A similar limit exists for attempting

to boost spatial resolution by increasing δt. The surest way to boost spatial resolution

(without any limit due to the sampling theorem) is by taking more points N , while

choosing a δk that is at the maximum value allowed by the Nyquist-Shannon sampling

theorem.

Ultimately, even if one takes more and more points in each direction of ~k space,

the spatial resolution will be ultimately determined by the linewidth of the frequency

spectrum of the sample. We can not resolve any features of the sample within this

linewidth because we no longer are sure from where the measured signal originates.

The natural linewidth of the spectrum is proportional to 1/T2 of the given sample,

so one needs to increase the effective T2 time in order to increase the possible spatial

resolution.

A method commonly used to give (artificial) higher resolution, is to just add points

to the raw ~k-space data in all directions. These points are given the value zero, leading

to the name of zero filling or zero padding. Occasionally, zero filling is used along

with multiplication of a broadening function (usually a Gaussian or Lorentzian, whose

decay is slow as to not greatly broaden the spectrum linewidth significantly). This is

done to ensure the acquired data decays to zero within the ~k-space points measured so

zero filling does not add artifacts to the image (due to the signal suddenly becoming

zero in the padded areas). Zero filling interpolates the image to add points in between
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original image points and generally smooths the image as a result. Of course, zero

filling is not adding any more information to the image, so this gives artificial higher

resolution. The true spatial resolution is still determined by the measured data. If

a broadening function is used, this true spatial resolution will actually be decreased

somewhat because δx will be increased by the extra linewidth caused by the broadening

function.

2.2.4 Exploiting Hermitian Symmetry

Another common strategy that we will employ in our image reconstruction is to exploit

Hermitian symmetry to speed up data acquisition by a factor of two by only sampling

half of ~k space. We are able to do this because the complex image is expected to have

no imaginary part (since it is a measurement of a real physical property, in our case the

density of spins at a particular spatial location). If our S(~r) is real-only, that means its

inverse Fourier transform, S(~k), has Hermitian symmetry about the origin of ~k space.

For us, that means our acquired ~k-space data obeys the following relation,

S(−kx,−ky,−kz) = S∗(kx, ky, kz), (2.26)

where S∗(~k) is the complex conjugate of S(~k). This means we only need half of ~k

space to fully reconstruct our real image. This can only be done on data that has no

unwanted phase shifts due to hardware group delays, eddy currents, etc. Our imaging

sequence gives us very good and accurate phasing of the data to produce a purely real

image.
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2.3 Equipment

Here I will briefly discuss the equipment we have used to perform the various experi-

ments described in this dissertation work.

2.3.1 NMR Equipment

The NMR experiments in this work were performed on an Oxford Instruments Teslatron

superconducting magnet with an 88-mm bore at 12 Tesla. We used a Tecmag Apollo

spectrometer controlled via the NTNMR software. The signal was detected using

home-built solenoidal coils matched to sample sizes and tuned to the desired Larmor

frequency via a resonant tank circuit in order to boost transmitter pulse power and

receiver signal sensitivity.

The tank circuit includes the coil with inductance L and two variable capacitors,

CT and CM . Any resistance is very small and due to the wiring of the circuit. The

tuning capacitor, CT , plays the role of the capacitor in conventional RLC circuits and

determines the resonant frequency of the circuit, ω0 = 1/
√
LCT . In order to match

the impedance of the circuit to the 50Ω cable attached to the spectrometer, a variable

matching capacitor (CM) is added to the circuit to control circuit impedance. The two

tank circuits we use (depending on the desired tuning frequency) are given in figure

2.4.

2.3.2 Imaging Equipment

The MRI data was acquired on a Bruker Avance 4.0 Tesla/31 cm animal system running

ParaVision 3.0.1. The 15-cm bore, actively shielded Magnex gradient coil set has

a maximum gradient strength of 150mT/m for all three axes (although the largest
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Figure 2.4: High frequency (ω0 > 100MHz) and low frequency (ω0 < 100MHz) circuits
used for tuning the probe.

gradient magnitude we have used for imaging has been 30mT/m due to the need to

confine the signal within a single octant of our 3D, eight-octant spectral FOV). Each

gradient coil is connected to its own AE Techron 8607 gradient amplifier (150V/130A).

The gradient ramp mode was set to “ramp off” to achieve the fastest possible transients.

The signal was detected using home-built solenoidal coils (matched to the sample

sizes). These same coils were used to generate the rectangular pulses used in the

imaging pulse sequence (with T90 in the range of 4-12µs). The probe circuit was

tuned using the low frequency tank circuit shown above. The imaging data were

acquired stroboscopically using the Bruker’s analog acquisition mode. Short bursts of

5 complex points were sampled using an external dwell time of 2µs around the end of

each pulse block. The built-in 125-kHz low-pass filter of the Bruker Avance system was

supplemented by a second inline filter (Krohn-Hite Model 3940, dual-channel, 15-kHz

low-pass Bessel) inserted just before the analog-to-digital converter.
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2.4 Challenges of MRI of Solids

The main challenges between imaging 1H in water and other nuclear isotopes - like

31P, which our research will be focused on in this work - derives mainly from the

basic differences between liquids and hard or soft solids. In MRI, the possible spatial

resolution is going to be ultimately limited by the MR linewidth of the signal, which

itself is inversely proportional to the effective T2 of the sample. As was discussed above,

T2 is the characteristic time for spins to dephase in the transverse plane due to differing

local magnetic fields. These differing local magnetic fields can be due, for example, to

spin-spin (dipolar) interactions between the nuclei (which shall be denoted by HZZ), to

chemical or magnetic shifts arising from variations in electronic configurations around

each nucleus (denoted by HZ), or various small time-dependent fluctuating fields which

can be in any direction (denoted by δHi(t)). In a liquid, the molecules move freely on

fast time-scales, so the HZ and HZZ terms average to < HZ > and zero, respectively,

leaving T2 to be determined predominately by the small fluctuating fields, δHi(t). The

resulting T2 relaxation time in liquids is on the order of seconds. Immobile nuclei in a

the crystalline lattice of a solid, on the other hand, feel the full effects of Zeeman (HZ)

and dipolar (HZZ) terms and, as a result, have much faster decay times, where T2 is

often less than a millisecond. This leads to much wider linewidths for solids and poorer

spatial resolution when attempting imaging. See figure 2.5 for a good comparison of

the linewidth difference between solids and liquids.

Of course one possible solution for short T2 samples is to just repeat the experiment

multiple times, taking a single point in each experiment, referred to as ‘single point

imaging’ [3]. Here the longitudinal relaxation time T1 plays a large role, since one

typically waits longer than T1 before repeating an experiment in order for the spins

to polarize along the direction of the applied external magnetic field. Longitudinal
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Figure 2.5: (Left) Example of two peaks located at 150Hz (red) and 350Hz (blue)
with a typical liquid linewidth (≈ 8 Hz). The amplitude is normalized to one in this
figure, but is experimentally determined by the number of nuclei in the sample (N)
and a function of the wait time between experiments (trep) over T1. The FWHM is
inversely proportional to the effective T2 of the sample. (Right) The same two peaks
are shown with a typical solid linewidth (≈ 5 kHz) and the signal has been multiplied
by 1000 to have the same scaling as that of the liquid. The two peaks overlap badly
and are virtually indistinguishable (note the y-axis starts at 0.95, not 0), leading to
worse spatial resolution when imaging solids.

relaxation times can vary widely from sample to sample since they are determined by

the fluctuating field term (δHi(t)) in the spin Hamiltonian (with drier samples often

having more lengthy T1’s since fewer protons from water are present to help induce

relaxation). Since one must wait longer than T1 before repeating the experiment,

using single point imaging on a living sample is often impractical due to the very long

imaging times required.

Our sequence can get rid of the effects of the Zeeman (HZ) and dipolar terms (HZZ)

in the spin Hamiltonian, making the effective T2 of the solid similar to that of a liquid,

providing the narrow linewidths required for higher spatial resolution. In other words,

we convert the 31P spectra in bone from figure 2.5(right) to figure 2.5(left). Details

about how this line-narrowing pulse sequence works are left for chapters 2 and 3. Our

pulse sequence has no effect on T1, so imaging times can still be very long. However,

we are still much faster than single-point imaging because we are able take many data
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points for a given experiment before the signal decays. To speed up imaging further,

we make use of sparse sampling techniques and image reconstruction algorithms, which

will be discussed in chapter 4.
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Chapter 3

Quadratic Echo Line-Narrowing

and Imaging Pulse Sequences

The use of complex pulse sequences is very common in state-of-the-art NMR. Ad-

vanced pulse sequences can be used to control the most important terms in the spin

Hamiltonian of the system, including the Hamiltonian term HZZ which describes the

dipole-dipole interactions between spins and HZ which describes the Zeeman shifts

due to the local magnetic fields felt by the nuclei. Typically, pulse sequences cannot

control both HZ and HZZ at the same time. The pulse sequences developed in our

group differ from existing NMR pulse sequences in several ways. For example, most

prior pulse methods to control the dipolar term in the spin Hamiltonian assume the

conventional Dirac-Delta approximation for pulses and work best for spin systems with

small Zeeman terms. Our technique uses the quantum dynamics inside of the pulses

themselves, and it works well in the regime where both Zeeman and dipolar interaction

terms are relevant [33, 34, 35].

In this chapter I discuss the line-narrowing pulse sequences designed by our lab to

reverse signs of certain terms of the spin Hamiltonian - either the Zeeman off-resonance
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term, the dipolar coupling interaction term, or both - so that measurements can be

made when certain terms of the Hamiltonian have acted, and others, notably the

interaction terms, have not. This control over the effect of interactions on the time

evolution of the spin system can lead to very long nuclear coherence times - up to

70,000 times longer [34] in one pure silicon sample - and can theoretically be used for

any spin-1/2 system with a similar Hamiltonian, whether it be a system of qubits or

phosphorus nuclei in a chunk of bone.

Section 3.1 is primarily a summary of the doctoral work by Dale Li [33], Yanqun

Dong [34, 36], and Rona Ramos [35], which led to the development of the quadratic

echo line-narrowing sequence. I will continue using ‘we’ and ‘our’ in this section, but

this refers to the work and ideas of Dale, Yanqun, and Rona based on my discussions

with them and the content of their theses and papers. Section 3.2 discusses imaging

techniques developed by Yanqun and Rona, which were then further tested and per-

fected by undergraduates Ben Deen and Suyog Bhandari. I used these techniques to

study 31P in bone, and all the data shown are my results from these experiments. The

last section (3.3) and the remaining chapters focus on my doctoral research, so ’we’

will refer to my own personal experiences.

3.1 Brief History of the Development of the Line-

Narrowing Sequence

In April 2001, the Barrett lab set out to do basic NMR measurements of phosphorus

spins in silicon to test the applicability of Bruce Kane’s seminal proposal [37] to build

a quantum computer using spins in semiconductors. The first goal was to measure

the transverse relaxation time, T2. This is conventionally measured using a spin echo

experiment which refocuses the Zeeman terms in the spin Hamiltonian and leaves only
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the dipolar terms. The most common spin echo experiment is the Hahn spin echo

experiment, where one excites the spins with a 90◦ pulse, waits some time delay τ ,

then applies a 180◦ pulse, and after another delay τ the peak of the echo can be

acquired (see figure 2.2). One then repeats the experiment multiple times using a

series of τ values and looks at how the peak of the echo decays with increasing τ to

learn about relaxation due to dipolar terms in the spin Hamiltonian. A faster way to

get this decay (without having to repeat so many experiments) is to keep on applying

180◦ pulses while acquiring the signal of the echo after each pulse. This is called the

Carr-Purcell-Meiboom-Gill (CPMG) spin echo pulse sequence, and can be written as:

90X − {τ − 180Y − τ}n, where acquisition is made at the end of the second τ period

before repeating the block in the curly brackets. The decay of the CPMG echo train is

another conventional measure of T2 [30], and the case n = 1 is the Hahn echo sequence.

In order to the test the accuracy of the T2 measuring methods before looking straight

at the phosphorus nuclei in phosphorus-doped silicon, the lab switched from observing

the 31P nucleus to the more abundant spin-1/2 isotope in the sample - the 29Si nuclear

spins of the host lattice. Almost immediately, the lab stumbled upon a very surprising

result. The CPMG sequence was giving a very slowly decaying signal that lasted much

longer than the Hahn echo signal decay (see figure 3.1). When one treats the pulses as

perfect, delta-function 180◦-pulses, the two experiments ought to give exactly the same

results. In fact, the Hahn echo signal agreed very well with the expected decay (black

curve), but we saw more signal then theory predicts in the CPMG measurements.

Similar results have been found in C60 and Y2O3 samples [38, 39, 40, 41, 33].

A reasonable first guess to explain this puzzle is that the CPMG experiment suffered

from imperfections (e.g. 180◦-pulse errors, phase transients, spatial inhomogeneity

of the pulses, etc.), but after changing various experimental parameters and greatly
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Hahn Echoes are Described by Dipolar Hamiltonian!

Si:P with 1019 P mom/cm3!
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Figure 3.1: Two 29Si NMR experiments to measure T2 in doped silicon disagree
sharply. Each of the Hahn echo peaks (green dots) are generated with a single 180◦

pulse, and they track the homonuclear dipolar decay (black curve) calculated in the
Ising model limit. On the other hand, the train of CPMG echoes (purple) are generated
with multiple 180◦ pulses spaced with delay 2τ = 592µs, and they decay much more
slowly, after many 180◦ pulses are applied. Figure adapted from Dale Li’s work [33].
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improving the pulses, this discrepancy remained. Clearly, something strange happens

when many 180◦ pulses are applied versus just a single 180◦ pulse. This forced the lab

to consider a possible intrinsic effect - real pulses are never Dirac-delta functions (since

they have some non-zero duration). 50 years worth of NMR experiments have used the

Delta-function approximation for pulses without manifesting the large discrepancies

seen here. We also were using very ‘hard’ (high-power, short-duration) pulses that

deviates only slightly from the Dirac-delta approximation. However, the lab eventually

realized that this intrinsic effect is not a random error, but is instead a coherent effect.

Thus, for pulse sequences with many pulses of particular phases and spacing (like

CPMG), these tiny, coherent ‘errors’ can add constructively to produce surprisingly

large effects on our observables. But the question still remained if the lab could actually

understand the physics of the system well enough to make use of this knowledge. For

these answers, the Barrett lab turned to the approximate analytic expressions offered

by average Hamiltonian theory (also known as coherent averaging theory).

3.1.1 Average Hamiltonian Theory

Here I will briefly introduce coherent averaging (now more commonly called average

Hamiltonian theory), which the lab used to give an analytic approximation of pulse

sequences with finite pulses. See the theses of Yanqun Dong [36] and Rona Ramos [35]

for a far more in-depth description of these calculations and the development of the

quadratic echo line-narrowing sequence.

Average Hamiltonian theory is a very useful analytical tool to describe systems

evolving under the influence of a time-dependent periodic perturbation [42, 43, 43]. For

our case, the perturbation is due to the multiple-pulse block being applied periodically.

One chooses an interaction frame (also known as the toggling frame) such that this

perturbation does not explicitly appear in the resulting average Hamiltonian. We first
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write the total Hamiltonian as a sum of a time-independent and a time-dependent

(perturbing) term:

H = H0 +H1(t), (3.1)

where H0 is the unperturbed Hamiltonian and H1(t) is the perturbation. The general

time evolution operator is give by:

U(t) = T exp

[
− i
~

∫ t

0

dt′(H0 +H1(t′))

]
, (3.2)

where T is the Dyson time ordering operator. In order to separate the effects of H0 and

H1(t), we can divide the general time evolution operator into two factors such that,

U(t) = U1(t)U0(t), (3.3)

where

U1(t) = T exp

[
− i
~

∫ t

0

dt′H1(t′)

]
(3.4)

U0(t) = T exp

[
− i
~

∫ t

0

dt′H̃0(t′)

]
(3.5)

and H̃0(t) is the Hamiltonian in the toggling frame with respect to H1(t) given by:

H̃0(t) = U−1
1 (t)H0U1(t). (3.6)

If we require the time-dependent perturbation Hamiltonian, H1(t), to be periodic

with period tc (the cycle time),

H1(t+ ntc) = H1(t) for n = 0, 1, 2, . . . (3.7)
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as well as cyclic so that

U1(tc) = 1, (3.8)

H1 has no direct effect after one full cycle. This simply means that the toggling frame

returns to its original orientation (and H̃0 returns to its original value) after each tc.

Provided we only look stroboscopically at interval times of tc, the general time evolution

operator is then given simply by

U(ntc) = U0(tc)
n. (3.9)

It is convenient to express this time evolution in terms of a single average Hamil-

tonian H̄ such that

U(tc)
n = exp

[
− i
~
H̄ntc

]
. (3.10)

This average Hamiltonian can be expanded using the Magnus expansion to be:

H̄ = H̄(0) + H̄(1) + H̄(2) . . . (3.11)

where the first two terms (which are the only ones typically used) are given by:

H̄(0) =
1

tc

∫ tc

0

dtH̃0(t) (3.12)

H̄(1) = − i

2~tc

∫ tc

0

dt2

∫ t2

0

dt1[H̃0(t2), H̃0(t1)]. (3.13)

The commutators between Hamiltonian operators at different times involved in the

higher-order terms become smaller for shorter cycle times tc, so a faster multiple-pulse

sequence in general will lead to better averaging where one can disregard the effects

of higher order terms. In practice for our pulse sequences, H1(t) consists of a small

number of piecewise constant time periods of pulses or free evolution. See references
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[36] and [35] for detailed calculations of the average Hamiltonians for various pertinent

pulse blocks.

3.1.2 Testing Our Model

The Barrett lab used average Hamiltonian theory to take into account the effects of

finite pulses and were able to to understand the results of many simple multi-pulse

sequences. For example, the experimental results for CPMG depend greatly on the

phases of the 180◦ pulses used, as shown in figure 3.2a. Here the gray signal comes

from using only 180Y pulses (CPMG), and the blue signal comes from alternating

between 180Y and 180−Y pulses (APCPMG). In the Dirac-delta limit of pulses, these

two pulse sequences should be equivalent. However, when taking into account the finite

width of the pulses, average Hamiltonian theory shows that the the APCPMG pattern

has an extra transverse field term, −λΩZIXT
where λ is a dimensionless constant and

ΩZ is the Zeeman energy shift such that HZ = ΩZIZT
. This extra term produces effects

similar to T ∗2 dephasing in the xy plane for the normal FID, except that in this case it

dephases magnetization in the yz plane. In order to calculate the average Hamiltonian

terms for CPMG and APCPMG, we took advantage of the periodic nature of the

pulses where CPMG is just repeated units of {Y, Y } = (τ − 180Y − 2τ − 180Y − τ) and

APCPMG is repeated units of {Y,−Y } = (τ − 180Y − 2τ − 180−Y − τ).

Since we have identified the effective transverse field term leading to a ‘FID’ of the

CPMG echo train, it is natural to try to manipulate it in order to make an ‘echo of

the echo train’ by inserting a single 180Y pulse (see figure 3.2a) or by reversing the

APCPMG pattern for the second half of the acquisition (see figure 3.2c). As our model

predicted, these two changes to the sequence give the same exact results. These results

also suggest that these observations cannot be due to pulse error, because we add one

pulse in one case and change many pulses in the other. As further test of the model,
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adding a 180X pulse does not do anything because the effective field term is in the

x-direction (figure 3.2b). After playing with a single ‘echo of echoes’, one can then try

to extend this idea to the ’CPMG of the echoes’, which was done in figure 3.2d.

This shows that the approximate average Hamiltonian model works very well at

telling us what to analytically expect from simple pulse sequences and the effective

fields due to the finite nature of the pulses. The experiments above used just the

zeroth order of the average Hamiltonian expansion to control the Zeeman interactions.

Next the lab tried to manipulate the dipolar interactions as well, as shown in figure

3.3. Here we were inspired by the magic echo experiments [44], where the dipolar

interaction is rephased through use of a long rf pulse. In our variant on the original

magic echo experiment, the role of the long rf pulse is played by the effective transverse

field term that appears in the zeroth-order average Hamiltonian. Here both Zeeman

and dipolar phases are refocused using a well-placed 180Y pulse and a negative dipolar-

Hamiltonian term in the pulse burst. This complexity explains why the green echo has

a larger amplitude than the blue echo in figure 3.3d, despite the fact that it forms later

in the free evolution period. This control over both Zeeman and dipolar phases is very

different from the original magic echo, which works best if the total Zeeman energy

shift due to both internal and external Zeeman spin Hamiltonians (Ωnet
Z = Ωint

Z + Ωext
Z )

is zero.

3.1.3 Designing the Quadratic Echo Line-Narrowing Pulse Se-

quence

As can be seen from the echo experiments in figures 3.2 and 3.3, we can take advantage

of the transverse field term appearing in the zeroth order of the average Hamiltonian
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Figure 3.2: Data for 13C nuclei in C60 at room temperature and 12 Tesla where
each point here is the peak of an echo, τ = 25µs and the signal is normalized to
the amplitude of the C60 FID. (a) Comparison of the CPMG sequence (gray) to the
APCPMG sequence (blue). Inserting a single 180Y pulse into APCPMG (green) in-
duces an echo of the echo train. (b) Inserting a single 180X pulse into APCPMG (red)
has no effect. (c) Reversing the APCPMG phase pattern (black) has the same effect as
inserting a single 180Y pulse (green). (d) A CPMG of the echo train is induced by us-
ing 90X{−Y, Y }10({Y,−Y }20{−Y, Y }20)repeat where {−Y, Y }N represents the sequence
(τ − 180Y − 2τ − 180Y − τ). From reference [34].
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Figure 3.3: Three experiments inspired by the magic echo using the C60 sample
at room temperature and 12 Tesla. All experiments start with {−X,X}200 using
τ = 50µs, but have distinctly different results. (a)-(c) Simulations of the phase angle
evolution with the dipolar phase (ΦZZ(t)) in black and the Zeeman phase (ΦZ(t)) in the
color of the experimental trace. The crossing of the lines gives the expected location
of an echo. In (a), when a 90−X follows the repeated block, the ΦZ(t) lines fail to cross
and the large Zeeman dephasing spoils the dipolar echo, so no echo appears (red in
(d)). In (b), when a 90X follows the repeated block, the ΦZ(t) lines do cross and an
echo is observed (blue in (d)) close to the expected tZeeman location (blue dashed line
in (d)). Large Zeeman dephasing spoils any later dipolar echo from appearing. In (c),
the failed sequence in (a) is repaired by applying a 180Y pulse at a time tf after the
burst which forces the ΦZ(t) and ΦZZ(t) lines to cross simultaneously, resulting in an
optimized echo (green in (d)) near the expected location, tdipolar. From reference [34].
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of the ‘alternating phase’ {φ,−φ} family of pulse sequences. When these experiments

worked, the lab wondered if we could make use of the transverse field that appears in

the ‘same phase’ {φ, φ} family of pulse sequences (like CPMG {Y, Y } or CP {X,X}).

However, our first attempts to make use of CP failed miserably when we found that

the signal was quickly destroyed by the ugly terms in the H̄(1) term that we had hoped

to ignore. However, inspired by Solomon’s rotary echo experiment [45], we tried using

an interval of CP followed by an equal interval of flip-CP {−X,−X}, to cancel out the

effects of the unwanted H̄(1) term. This composite block can then be approximated by

a fairly simple analytic expression for the average Hamiltonian [34, 36, 35],

− HXX

2
− 2κ2Ωint

Z Ωext
Z IXT

, (3.14)

where Ωint
Z is any internal Zeeman shift (e.g., due to sample diamagnetism, offset from

the magnet’s isocenter, and the chemical shift) and Ωext
Z is any external offset imposed

by the experimentalist (e.g., due to the applied magnetic field gradient and any pulse

frequency offset). We have shown [34] that this can be well approximated further

(through second averaging in the toggling frame of the field given by the second term)

by −1
2
HXX . This composite block can then be used to refocus the dipolar Hamiltonian.

Since the first-order effective Hamiltonian term providing this refocusing arises from a

commutator, it is proportional to (Ωnet
Z )2 and these two-spin interactions can be used to

cancel the two-spin dipolar interaction. To illustrate this difference compared to other

pulse sequences (which make use of effective Hamiltonian terms linearly proportional

to Ωnet
Z ), we named this pulse sequence the quadratic echo.

Figure 3.4 shows a simple version of the line-narrowing pulse sequence which uses

the quadratic echo to refocus the (time-independent) dipolar Hamiltonian and a hidden

180Y to refocus the (time-independent) Zeeman Hamiltonian at the end of the 6∆ time
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period. Here the quadratic echo pulse block is surrounded by 90−Y ‘external wrapper’

pulses which have, in the delta-function approximation, the effect of rotating the HXX

term given above to HZZ and also provides the hidden 180Y pulse (because the second

90−Y can be thought of as the 90+Y required to ‘rotate’ HXX into HZZ , followed

immediately by a 180+Y , which provides the ‘flip’ of HZ , leaving HZZ alone). As a

result, if we are only acquiring at the beginning and end of the pulse block, the spins

should see no net time evolution due to Zeeman and dipolar spin Hamiltonians. This

is then essentially a ‘time-suspension’ sequence that leads to extreme line-narrowing.

It is important to note that we are controlling both Zeeman (HZ) and dipolar

interactions (HZZ) in order to achieve extreme line-narrowing. This is unlike other

line-narrowing methods, which only work in the regime dominated by either dipolar

interactions or Zeeman interactions. Our technique fills the gap to work with samples

where both Zeeman and dipolar interaction terms are relevant, (HZ ≥ HZZ). This is

particularly helpful for imaging, where magnetic field gradients are applied to encode

spatial information in the frequency of the signal via non-zero Zeeman interactions

with the nuclear spins. Other line-narrowing pulse sequences (e.g. MREV or magic

echo) must turn off the gradients during the pulse block for their pulse sequence to be

most effective.

The effectiveness of this line-narrowing sequence can be seen in figure 3.5, where

the effective T2 of 29Si in a sample of silicon powder doped with antimony was pushed

all the way out to nearly 1/3 T1. This narrowed the spectrum by a factor of nearly

70,000. Once we have the ability to turn off both the Zeeman and dipolar terms

in the internal spin Hamiltonian, we can then turn on other terms to design a spin

Hamiltonian to achieve a specific experimental goal. For MR imaging, we would like

spins to ‘see’ the external Zeeman Hamiltonian from applied magnetic field gradients,
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Figure 3.4: Depiction of the quadratic echo line-narrowing pulse block. The pulse
block is made up of three time periods between consecutive acquistion periods (labelled
‘Acq.’). The Zeeman (HZ) and dipolar (HZZ) terms of the spin Hamiltonian acting
over each of the three time periods is given beneath the pulse sequence. The net effect
of both Zeeman and dipolar Hamiltonian terms over the entire 6∆ + T180 ≈ 6∆ of the
pulse block is zero, leading to time-suspension or extreme line-narrowing.

without the internal Zeeman and dipolar Hamiltonians broadening the spectrum. In

the next section, we talk about the various ways of implementing this line-narrowing

sequence particularly for use in MRI.

3.2 Imaging Sequences

In order to do imaging, along with using line-narrowing to get rid of unwanted internal

spin Hamiltonians, we also want our sequence to leave alone the effects of any externally

applied Hamiltonians (e.g., due to magnetic field gradients or a pulse frequency offset).

For these externally applied Hamiltonians to not be cancelled by our line-narrowing

pulse sequence, we must change the sign of the externally applied fields in sync with

our pulse sequence. Notably, if the externally applied gradient or offset is positive in

the first ∆ of the pulse sequence, than it should be negative in the final ∆ in order to

not be refocused by the hidden 180Y pulse at the end of our pulse burst (see figure 3.4).
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Figure 3.5: The 29Si time-suspension (line-narrowing) data (blue) on a sample of
Si:Sb using the sequence 90X{2, 0,−Y,−Y }84000, with τ = 60µs, νoffset = 2.5kHz, and
the corresponding fitting curve (black) extend far beyond the normal 29Si FID with
νoffset = 0Hz (red). (inset) The 200Hz normal spectrum (red) is narrowed to 0.003Hz
(black, Fourier transformation of the fitting curve), centered at νoffset, this is a line-
narrowing by a factor of nearly 70,000.

Of course, there are many different possible patterns to do this, and further below we

explore a few of the possibilities. Before exploring these various versions of our imaging

pulse sequence, I first discuss the modification of our first-generation line-narrowing

pulse block to be better suited for imaging experiments.

3.2.1 Second Generation Pulse Block

For conventional high-resolution imaging, one would like to increase the sampling dwell

time to reduce the spectral bandwidth to ‘zoom-in’ on a smaller spatial area for the

image FOV. In our case, the ‘dwell time’ is now replaced with what we call the ‘sparse

dwell time’ which is the time between acquisition windows. For the first-generation

quadratic echo line-narrowing pulse block given above, this sparse dwell time is equal to

6∆ +T180 where ∆ = 2τ +T180 using the quadratic echo line-narrowing pulse sequence

given above. One can increase the sparse dwell time by simply increasing τ , but this
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also reduces the effectiveness of the pulse sequence itself. (It is also worthwhile to note

that one can use a τ that is too short so that the transverse field terms we are utilizing

can become comparable to the large external magnetic field for large offset frequencies.

This causes spins to precess out of the xy-plane and reduces the measured signal. We

typically keep τ comparable to T180 or larger.) However, we found that we can get

essentially the same effectiveness with double the sparse dwell time by keeping a short

τ and using two composite blocks of CP and flip-CP with added ‘internal wrappers’

90±X pulses (see figure 3.6). The sparse dwell time then becomes 6∆ + 2T180 where

∆ = 2(2τ + T180).
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Figure 3.6: Versions of the second generation line-narrowing pulse block with external
(tallest height) and internal (medium height) 90◦ wrapper pulses with different phases.
(The heights of the pulses were changed to emphasize the locations of the wrapper
pulses; in application, all pulses had the same amplitude.)
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The second generation pulse block is now beyond our theoretical understanding

(because average Hamiltonian theory on this large composite block introduces many

complicated terms without a way to gauge which are the most important). This par-

ticular design was instead determined through many experiments. Undergraduates

Ben Deen and Suyog Bhandari both had independent research projects where they

changed different aspects of this second-generation pulse sequence to determine what

parameters produced the best line-narrowing in PbTiO3, particularly for use in an

electric dipole moment experiment. They tested the best number of composite blocks

to include, the pattern of arranging these blocks, as well as the phases of the external

and internal wrappers. They found that increasing the number of composite blocks

between acquisition windows increased the linewidth and the pattern of the composite

block (either ‘alternating’ or ‘blocked’ patterns) did not matter for the most part. A

summary of some of their findings regarding external and internal wrapper phasing are

given below.

External Wrapper Pulses

For both line-narrowing and imaging sequences, repeated pulse blocks are used. One

can choose to always have the same phase external wrappers on all pulse blocks or

to change the phase in different patterns. The simplest pattern would be to simply

alternate between using 90Y and 90−Y as external wrapper phases in consecutive pulse

blocks. A similar alternating pattern (where phase was changed after every two blocks

instead) was found to give a more symmetric response when either a 90X or 90Y

excitation pulse is being used. We expect this is the case because the train of 90Y

(or 90−Y ) pulses when all pulse blocks have the same external wrapper pulse phase

introduces an effective HY Y term. This term dephases the spins when they are directed

along the x axis (resulting from a 90Y initial excitation pulse), but does not dephase
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the spins when they are directed along the y axis (resulting from a 90X excitation

pulse). One can get rid of this effective HY Y term by simply changing the phase of the

external wrappers.

Internal Wrapper Pulses

Internal wrappers were added to the second-generation line-narrowing pulse block in

order to help the second averaging which suppresses the second term in the compos-

ite block Hamiltonian (see equation 3.14). In experiment, we did find that internal

wrappers helped with line-narrowing in the pulse blocks containing multiple composite

blocks. Similar to what was found for external wrappers, reversing the phase of all

internal wrappers along with external wrappers after every two pulse blocks provided

good line-narrowing as well as a symmetric response when either a 90X or 90Y exci-

tation pulse was being used. One can imagine using more internal wrappers than the

two shown in figure 3.6, but we found similar linewidths were attainable when using

six internal wrappers compared with two, so we stayed with two for simplicity.

3.2.2 Low Resolution Imaging Sequence

One possible imaging sequence which could be useful in the future (despite its lower

resolution) is to leave all Zeeman Hamiltonian terms acting by switching the phase of

second external wrapper pulse to be opposite the first external wrapper pulse in figure

3.6. This change means there is no longer a hidden 180Y pulse after the pulse burst, so

the internal (and any applied external) Zeeman Hamiltonian terms are not refocused.

This would result in worse resolution, but would keep any chemical shift information

that might be important for certain types of experiments. This would also be helpful

for imaging systems without fast-switching gradients, as the gradients would no longer

need to be changing signs after every pulse block.
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3.2.3 High Resolution Fast Switch Imaging Sequence

In order to do high resolution imaging, we want to make full use of the quadratic echo

line-narrowing sequence to get rid of all internal spin Hamiltonians (both dipolar and

Zeeman), but keep the effect due to external Zeeman Hamiltonians (due to applied

magnetic field gradients needed for imaging or pulse frequency offsets). To keep the

pulse sequence from cancelling the effects of the external Zeeman Hamiltonians, we

need to change the sign of the applied gradients or frequency offsets in sync with the

pulse sequence. Basically, the sign of the applied gradients or frequency offsets for the

final ∆ needs to be opposite the sign of the applied gradients or frequency offsets in the

initial ∆ in each pulse block. One simple way to do this would be to change the sign of

the gradients or pulse frequency offsets at every free-evolution period, ∆. In fact this

was done in our actual MRI experiments, because it was simpler to program with the

pulse program length constraint of the Bruker MRI system (see the next chapter for

the final version used for imaging). However, similar to the findings above, one gets

better line-narrowing performance by changing the periodicity some what. Figure 3.7

shows the fast switch pulse sequence we perfected to get very good linewidth across a

wide range of offset frequencies (used to mimic the effect of magnetic field gradients).

This sequence makes use of changing external and internal wrapper phases after every

two pulse blocks, as we found worked in previous experiments.

In order to mimic the effect of applying magnetic field gradients (which we do not

have installed in the 12T system in the Barrett physics laboratory), we added a pulse

frequency offset to the transmitter and receiver of our spectrometer. A magnetic field

gradient causes spins in the sample to have slightly different precession frequencies

depending on their spatial location in the gradient. If a sample is uniform along

the gradient, we would expect a ‘box top’ shape. To mimic this effect, we ran our fast
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Figure 3.7: Pulse sequence for high resolution imaging with fast switching of the
externally applied global Zeeman offset. This global offset is due to applied magnetic
field gradients, for imaging, or adding an offset frequency to the transmitter and receiver
of the spectrometer to mimic the effects of gradients, as was done in our box top data.
Acquisition is taken at the black dotted lines and the entire sequence between the
square brackets is looped until the desired amount of data points have been acquired.

Figure 3.8: Box top data using the larger loop fast switch imaging sequence shown
in figure 3.7 with τ = 5µs and T180 = 10.1µs. This data was taken looking at 31P in a
powdered bovine bone sample.
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switch sequence using a set of uniformly-spaced offset frequencies to test the sequence’s

effectiveness across a wide range of frequencies to give a discretized ‘box top’ shape. If

our sequence gives spectra with the same amplitude and linewidth across a wide range

of frequencies, then we can be confident that no added distortions would be added to

an MRI image from the pulse sequence.

Figure 3.8 shows the ‘box top’ data we took using the fast switch pulse sequence

shown in figure 3.7 (looking at 31P in a powdered bone sample). It is important to note

that even though the applied offset frequencies were -1kHz to 1kHz in 100Hz steps,

the observed frequencies are much smaller (by a factor of ≈1/3) because the external

Zeeman Hamiltonian only acts over 2∆ out of the total ≈ 6∆ pulse block. The box

top is fairly uniform across this range of frequencies, with the notable exception of 0Hz

(no frequency offset). In this case the spectrum is slightly narrower and has a higher

amplitude with the help of spin-locking (where spins align with effective fields, in this

case due to the pulse sequence itself). Running with a frequency offset however keeps

spins rotating in the toggling frame, limiting spin-locking from occurring. Despite

its line-narrowing effect on the spectrum, spin-locking is undesirable because it keeps

some spins from evolving as we desire (e.g., with a given offset frequency), so some

signal from the each offset frequency peak leaks into a small peak at 0Hz. This effect

gets worse as the offset frequency approaches 0Hz, so, in application for imaging, we

often purposely use offset frequencies to ensure the entire spectrum (spread over many

frequencies due to applied gradients) is far from the 0Hz region.

3.2.4 High Resolution Slow Switch Imaging Sequence

As its name suggest, the fast switch imaging sequence requires switching the gradients

fairly frequently and rapidly, which is a challenge for many conventional MRI systems

where the gradient ramp time is usually fairly long (hundreds of microseconds). In
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order to fit in the gradient change, the timing of the pulse sequence might have to be

lengthened and its effectiveness reduced. Anticipating this difficulty, we also developed

the slow switch imaging sequence shown in figure 3.9, which has the gradient change

after several pulse blocks. The total Zeeman Hamiltonian (both internal and external)

is allowed to act over these pulse blocks by changing the phase of the final external

wrapper, just like the low resolution pulse sequence. These pulse blocks are then

followed by a 180±Y pulse to change the sign of all the Zeeman Hamiltonian terms.

The externally applied gradient or offset frequency changes sign at this time as well,

so its effect is not refocused. After the same number of pulse blocks, one can then

acquire the echo where both Zeeman and dipolar Hamiltonians should be refocused.

Note, we are no longer acquiring after each pulse block, so now the sparse dwell time

is increased by a factor equal to the number of pulse blocks between the 180◦ pulses.

Looking at P31 in a powdered bone sample, figure 3.10 shows the ‘box top’ data

using the slow switch pulse sequence shown in figure 3.9. In comparison with the fast

switch results, the frequency bandwidth is greatly reduced due to the increase in dwell

time, so the box top fills a much larger portion of the total bandwidth. There is also

more variation in the spectra for different offset frequencies (e.g., phasing is slightly

off, 0Hz peaks from non-zero offset frequencies are larger, and the overall linewidth of

each peak is wider). Clearly, fast switch is preferable and one would use this only if

needed to fit in slow-changing gradients.

3.3 Important Considerations for MRI of Solids

In order to to implement the pulse sequences above for solid-state imaging, there are

some other factors one must consider. The methods above involve very high-power
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Figure 3.9: Pulse sequence for high resolution imaging with slow switching of the
externally applied global Zeeman offset (Ωglob). Here the pulse blocks are similar to
the pulse blocks of the same color shown in 3.6 except the final external wrapper has the
opposite phase as the initial external wrapper so the Zeeman Hamiltonian is left acting
over the pulse block. To refocus just the unwanted internal Zeeman Hamiltonian, we
add in 180◦ pulses (made larger so you can see their locations) in sync with changing
Ωglob.

Figure 3.10: Box top data using the slow switch imaging sequence shown in figure
3.9 with τ = 3µs and T180 = 8.7µs. This data was taken looking at 31P in a powdered
bovine bone sample.
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pulses typical for solid-state NMR but not used in MRI due to heating concerns for

patients. We plan to focus first on ex vivo samples, but if the quadratic echo imaging

pulse sequence were to be used on human patients, the pulse power would need to be

reduced significantly. Below we explore the effectiveness of the quadratic echo imaging

pulse sequence at lower pulse powers. There are also other considerations to think

about when converting a conventional MRI system (used mainly to image 1H in water)

for use in solid-state MRI. Further below we discuss some of the modifications we made

to a liquid-state MRI system in order to do our solid-state imaging.

Table 3.1: Table of the change in FWHM and magnitude of spectral peak with lowering
pulse power (increasing T180). The T180 values below the horizontal line were too long to
excite the entire spectrum. For consistency, the values are taken from spectra where no
global frequency offset was used to get rid of any effects due to spectra being in different
locations inside the FOV. The magnitude of the spectral peak was also corrected for
the different sparse dwell times of the experiments. ∗Hard excitation pulse and no
internal wrappers were used.

T180 (µs) FWHM (Hz) Magnitude of Peak
10.1 7 2.98 ×103

18.6 12 2.05 ×103

46.0 20 9.49 ×102

109.9∗ 25 7.75 ×102

225.4∗ 75 2.45 ×102

267.1∗ 87 1.50 ×102

307.9∗ 104 1.12 ×102

3.3.1 Lowering Pulse Power

The data reported in this thesis work were measured using strong pulses (T90 ≈ 10µs).

However, if one wanted to use quadratic echo imaging pulse sequences on a human

patient, the pulse power would need to be significantly lowered (and/or duty cycle

greatly reduced) to reduce possible heating in the patient. Thus, we were interested in

the effectiveness of the quadratic echo imaging pulse sequences with lower pulse powers.
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Results from these experiments are given in table 3.1. Compared to the 3200Hz original

FWHM linewidth of the data, the quadratic echo imaging sequence works surprisingly

well for even very low pulse powers. Its effectiveness understandably gets dramatically

worse in the regime where the pulses were too long to actually excite the entire width

of the FID spectrum.

During these experiments, we discovered that to get the best results for weaker

pulses, it was better to use an imaging pulse sequence without internal wrapper pulses

as well as a ‘hard’ initial excitation pulse. Finding the correct T180 times was also

challenging for weaker pulses because the nutation curves were not ideal. We instead

estimated the ‘correct’ low power T180 times from the high-power pulse T180 time by

measuring the ratio of the peak-to-peak voltages of the pulses (Vpp) and using the

equation,

T low power
180

T high power
180

=
V high power
pp

V low power
pp

. (3.15)

3.3.2 Imaging Sequence Used for MRI Results

All the data shown thus far was taken on a 12T solid-state NMR magnet in the Barrett

lab. Actual MRI needs to be done on a system with magnetic field gradients, and so

we used the 4T Bruker Avance system at Yale Medical School’s Magnetic Resonance

Research Center. This MRI system has an out-of-date spectrometer control system that

is designed primarily for liquid-state imaging of 1H. As a result, the nicely perfected

imaging pulse sequences discussed above were not easy (or practically impossible) to

implement due to system constraints. For example, due to memory constraints on

the length of the pulse sequence program, I had to use pulse blocks with the same

phase external and internal wrappers in order to keep the loop of the sequence as short

as possible. This leads to non-ideal results (e.g. transverse field terms in the HY Y

direction leading to spin-locking that results in an even worse artifact at f = 0Hz
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compared to the possible results if one could implement the more optimized pulse

sequences discussed above). Even using a simplified pulse sequence to shorten the

pulse program as much as possible, I still ran into memory issues on the Bruker system

when I tried running imaging experiments with too many averages and too many

scans. At times, higher-resolution was possible (by taking more ~k-space points, and

thus more scans per experiment), but was inhibited because the system could not run

the experiment due to memory issues. In some cases, I broke the imaging experiment

into multiple shorter runs (e.g., a separate experiment for each octant) to get around

this system constraint.

To further reduce noise on the system, we added an in-line Bessel low-pass filter at

15kHz (because our 31P signal in solids is a lot smaller than the signal one gets from 1H

in water). The use of the filter was particularly useful for our soft tissue samples, where

the signal was very hard to distinguish from the noise without the extra filter. We also

used analog detection mode (rarely used in liquid-state imaging) in order to incorporate

our stroboscopic detection of the data and had to incorporate a correction for the time

delay introduced by our added in-line filter. In order to accurately determine the

gradient ramp shape (which will be discussed in more detail in the next chapter), we

also needed to know about the presence of any other filters built into the MRI system.

These filter effects are very often insignificant for liquid-state imaging, but proved

important for correctly scaling our solid-state images.
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Chapter 4

High Resolution MRI of Solids

Our MRI of solids technique adopts the spatial encoding strategy pioneered by earlier

line-narrowing approaches to the MRI of solids: repeated pulse blocks null out the

internal spin Hamiltonian, while applied magnetic field gradients add in the external

spin Hamiltonian [46, 47, 48, 1]. As was discussed in the previous chapter, the quadratic

echo line-narrowing sequence has the unique advantage of working best in the regime

where HZ ≥ HZZ . Thus, our pulse block is a better choice to null out the internal spin

Hamiltonian of 31P (and other nuclei where HZ ≥ HZZ [49]), and stronger gradients

are more readily applied since they can be left on during the pulse burst. Furthermore,

our line-narrowing pulse block removes constant resonance offsets, so we do not need to

worry about susceptibility broadening, chemical shifts, and shimming of the magnet,

which are serious problems for many MRI approaches.

In this chapter, we discuss how we implemented the quadratic echo line-narrowing

sequence to do high resolution 31P MRI of solids using both Cartesian and radial

sampling of ~k space, as well as show our results imaging hard solids (e.g. bone mineral)

and soft solids (e.g. mouse brain). Most of this work is featured in our 2012 article in

Proceedings of the National Academy of Sciences, USA [50].
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4.1 MRI of Solids Using Cartesian Sampling

A large majority of MRI is done using a uniformly-spaced grid of points in ~k space,

so-called Cartesian sampling, because of its straightforward processing with FFT al-

gorithms. Our pulse sequence (which is naturally periodic and acquires points after

every ≈ 6∆) can also be easily adjusted to take points along the Cartesian grid by just

applying gradients in one direction at a time. Unlike other MRI pulse sequences, which

often use phase-encoding gradients to start sampling at the far corner in ~k space, we

always start at the origin of ~k space and our sequence gives a very accurately-phased ~k

= (0, 0, 0) point. More detailed information about how we applied our line-narrowing

pulse sequence to sample ~k space along the Cartesian grid is given below.

4.1.1 Cartesian Sampling of k Space

We use the 2nd generation quadratic echo line-narrowing pulse blocks discussed in

the previous chapter to build a 3D MRI pulse sequence that maps out ~k space along

a Cartesian grid, shown in figure 4.1B. Here we use the simplest version of the 2nd

generation pulse sequence (with very regular gradient and frequency offset switching,

as well as simple phasing of pulses) because the Bruker MRI system we were using

had limited memory for programming the pulse sequence, so we needed the smallest

repeatable unit possible. For other systems, we anticipate this not being as big of an

issue and the more complicated versions of the pulse sequence discussed in the previous

chapter can then be tried.

In the imaging pulse sequence shown in 4.1B, a non-selective 90◦ pulse excites the

full sample volume, and we acquire a single point in ~k space after each pulse block.

Since this pulse sequence effectively gets rid of time-independent Zeeman and dipolar

interactions, these stroboscopically detected points oscillate solely due to the effec-
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Figure 4.1: Schematic of our imaging sequence. (A) The main pulse block used in
our imaging sequences with 90◦ (thin) and 180◦ (thick) pulses along the Y (green), X
(red), and -X (blue) directions. (B) Diagram depicting the 3D MRI sequence with our

pulse block where the loop counters: Nz, Ny, and Nx determine the ~k-space trajectory.
The offset frequency can be set for each loop to place the image center off-center in
the FOV. A single ~k-space point is sampled at each dashed line.

tive applied field gradient and pulse frequency offset, foffset, like a pseudo-FID. This

sequence is thus a hybrid of echo (for internal fields) and FID (for external fields) imag-

ing approaches [51], which enables high spatial resolution. In order to encode spatial

information with the gradients, as well as position our image inside our FOV through

use of frequency offsets, we synchronize the applied field gradient and frequency offsets

with the pulse block. The gradient and frequency offset change signs for period “C”

(relative to period “A”) right after the hidden 180◦ pulse at the end of the pulse block

(as shown in figure 4.1A). The external Zeeman contributions to the spin Hamiltonian
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due to the applied gradient and frequency offset effectively act over both time periods

“A” and “C”.

Starting at ~k = (0, 0, 0), we sample ~k space uniformly along Cartesian grid tra-

jectories by systematically varying the loop parameters, Nx, Ny, and Nz (with Nx +

Ny + Nz = constant). Each black dashed-line in figure 4.1B shows where we acquire

a single ~k-space point. Both Gz and foffset are held constant through the first dashed-

line, making this an excellent ~k = (0, 0, 0) point, which is crucial for proper phasing

(and co-adding) of the signals at this point. Next, to map out a particular Cartesian

trajectory in ~k space, just Gz is modulated during the Nz loop, then Gy is modulated

during the Ny loop and finally Gx is modulated during the Nx loop. We refer to this

loop ordering as {Z, Y,X}. Note that the foffset value can be different in each loop, to

center the sample at a particular (x, y, z) spatial location in the FOV. This is particu-

larly useful because we position our sample to take up only one single octant to avoid

a known artifact at the center of the FOV. This artifact is a result of a complicated

kind of spin-locking (see [52] for good explanation of spin-locking) due to spins staying

aligned with the effective fields resulting from our pulse sequence, and similar effects

are encountered in most line-narrowing pulse sequences.

The real parts of two measured pseudo-FIDs are plotted in figure 4.2A, (although

only the first 17 points of each 32-point pseudo-FID are plotted here). They are the

same through the Nz loop (equal steps along +kz), but they diverge in the Ny loop,

with steps along +ky (-ky) for the yellow (blue) points due to flipped Gy modulation

patterns. They have the same Gx modulation in the final Nx loop (steps along +kx).

The two trajectories through 3D ~k-space are depicted in figure 4.2B and for simplicity

we will refer to their loop patterns as {Z, Y,X} (yellow) and {Z,−Y,X} (blue).

Figure 4.2C shows an octahedron of 3D ~k-space points filled in this manner. The

upper half of the octahedron lying in octants 1-4 is directly filled using the loop pat-
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terns: {Z, Y,X}, {Z, Y,−X}, {Z,−Y,X}, {Z,−Y,−X}, respectively. The same data

is used to complete the lower half of the octahedron (in octants 5-8), using the Herme-

tian symmetry of ~k-space [51]. A total of Npnts = 32 points were acquired in each of

the 1D pseudo-FIDs, which defines the octahedron’s surface (0 ≤ Nz, Ny, Nx ≤ 31 for

each trajectory, with the constraint Nz +Ny +Nx = 31). This loop pattern uses a total

of (Npnts/2)(Npnts + 1) = 528 pseudo-FIDs to fill each octant. Fourier transformation

of the ~k-space data yields a 3D 31P MR image (figure 4.2D-E ).

4.1.2 Cartesian Sampling Analysis

The previous section provides a general overview of how we sample ~k space along the

Cartesian grid. This section gets into the specifics of how we collect and analyze the

data to process the final image.

Acquisition of ~k-space Points

Above we referred to a single point of ~k space being acquired after each pulse block

in figure 4.1B. This single complex point needs to be acquired right at the peak of

the quadratic echo. In reality, we acquire five complex points (with dwell times of

2µs) for every acquisition window centered about the time where we expect the peak

of the echo. In order to accurately determine when the peak of echo occurs in time,

we needed to take into account the group delay of the echo due to the 15kHz low-

pass Bessel in-line filter we used to acquire our 31P data. In offline processing, we use

three applications of three-point binomial smoothing and then take the center point of

each 5-point acquisition window to make the pseudo-FID. Each pseudo-FID dataset is

phased using the first ~k = 0(t = 0) point, which has very consistent phase across all the

pseudo-FIDs. The sign of the imaginary points in every odd-numbered window is then
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Figure 4.2: Figure showing the mapping of acquired data onto ~k space and the
resulting image. (A) Plot showing real data acquired (from the dry bovine bone sample)

in the first 17 windows for two different trajectories in ~k-space. Starting at ~k = (0, 0, 0),
both the yellow-circle and blue-square points take 5 steps forward along the positive
kz-direction (Nz = 5). Next the yellow-circles (blue-squares) move 7 steps forward
(backward) along the positive ky-direction (Ny = 7). Finally, both the yellow-circles
and blue-squares step forward along the positive kx-direction (Nx = 19), for a total

of 32 points. (B) A 3D-plot of these two trajectories in ~k-space. (C ) 3D octahedron

of ~k-space points measured with our imaging scheme (plotting the magnitude of the
complex points in the time-domain). The imaging time was just under 47 hours. (D)
Isosurface rendering of the 3D image of 31P in two dry bovine bone blocks separated by
a 1.1 mm gap obtained by Fourier transformation of C. The spatial resolution is 0.428
x 0.428 x 0.353 mm3. Note the thru-hole in the top block which was drilled using a
0.343 mm diameter drill bit. The sample dimensions are 4.9 x 2.6 x 1.4 mm3 (bottom
bone) and 4.2 x 2.4 x 1.4 mm 3(top bone). The isosurface value was chosen to show
the presence of the thru-hole and is 65% of the maximum signal value. (E ) A 2D slice
of the 3D data (zero-filled by a factor of four) with thickness of 0.107 mm. The cut-off
for the minimum of the color-scale is the isosurface value used in D to clearly show
the thru-hole in the top bone and two partial holes in the bottom bone, made by the
same 0.343 mm-diameter drill bit.
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flipped, to account for the hidden 180Y pulse in each pulse block. Each pseudo-FID

then has a “sparse dwell time” of the total block duration (6∆ + 4T90 ≈ 0.5ms).

From these pseudo-FIDs (which vary due to different values of Nz, Ny, and Nx), we

then fill an octahedron inside a (64 pt)3 Cartesian grid in 3D ~k-space, with the ~k =

(0, 0, 0) point in the center of the grid. As a result of our sampling trajectories, many

points (particularly along the z-axis and zy-plane) are sampled multiple times. For a

particularly dramatic example, the trajectory with Nz = 31, Ny = 0, Nx = 0 will have

all but the final point in common to the trajectory with Nz = 30, Ny = 1, Nx = 0. To

correct for this oversampling of points, we first co-add the ‘p’ complex data points that

should correspond to the same ~k-value. Second, we divide the sum at each ~k-value by

the corresponding p (e.g., in figure 4.2B, p = 2 for the co-added data at ~k = (0, 0, 0),

while p = 1 at the other end of the trajectories).

Once we have our 3D grid of ~k-space data, we simply need to take the Fourier

transform to produce the desired image. To provide smoothing in the image, we often

first zero fill our ~k-space data by a factor of two or four, which has the effect of adding

points through interpolation in between points in the image. This zero padding is done

by simply putting the original data cube at the center of a larger (by a factor of two

or four) data cube. Every non-measured point is then assumed to be zero. This is a

fair approximation since we typically choose parameters so that the pseudo-FID signal

decays down to zero within the 32 acquired points.

Calculating Effective Gradient Factors

In order to scale the resulting image to give the correct spatial positions, we need to

know the net effect of the applied gradients. The image FOV in (Hz)3 can be converted

to the FOV in (meters)3 by dividing each frequency axis (e.g., fz) by the corresponding

gradient factor (e.g., αzγGz/2π, where αz is a scale factor less than 1 that compares
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the time that the gradient “is effective” to the total sparse dwell time between points

of the pseudo-FID). The spatial resolution in each direction (e.g. x is shown here, but

results for y and z have the same form) is then given by:

δx =
πδf

NpointsαxγGx

(4.1)

where Npoints = 32 for the examples above (and the total image size is 2Npoints ×

2Npoints × 2Npoints) and δf = 1/2tacq is the frequency resolution determined by the

total pseudo-FID acquisition time, tacq = Npoints∗‘sparse dwell time’.

As a first approximation, αz = 1
3

if we can apply +Gz during intervals “A” and

“B”, followed by −Gz during interval “C” (see blue dotted trace in figure 4.3), since

the effective gradient over the sparse dwell time is ≈ 2∆
6∆
Gz = 1

3
Gz. Of course, the

current through the gradient coils cannot change instantaneously, so a better value

for αz is obtained by measuring the output of the gradient amplifiers on a digital

oscilloscope (see green dashed trace in figure 4.3). This includes a slight time delay

(tdel) for the gradients to respond after the gradient command is given, as well as a

ramp time (tramp) for the gradients to change signs. An even better value for αz takes

into account the in-line low-pass isolation filter located en route to the gradient coil

(buried deep within the wall of the magnet room), which adds an additional ≈ 11µs

time delay to the schematic gradient waveform (see the black solid trace in figure 4.3).

This delay proved elusive at first and took about six months to track down. We first

noticed our images were consistently smaller in scale compared to µ-CT images of the

same sample. After double-checking all of our scaling calculations, I found that these

scale discrepancies could be explained by a single gradient delay of around 12 ±1µs.

When we asked the technician at the MRRC if there was anything that could cause this

delay, he mentioned the in-line filter for the gradients and fortunately had an extra
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filter we could test. We measured the filter to have an 11µs delay, which perfectly

matched our hypothesis, and ultimately fixed the image-scaling problem.

Including all of these important time delays, the scale factor αi (where i = x, y, z)

is then given by the equation:

αi =
2∆− 2tdel − tramp

Sparse Dwell
(4.2)

where tdel includes an ≈ 6µs time delay for the gradient system to respond to the

programmed command as well as ≈ 11µs delay due to the presence of the in-line low

pass isolation filter. The time it takes for the gradient to go from −Gi to +Gi (tramp) is

dependent on the gradient amplitude, as well as the direction of the gradient (because

each gradient direction is generated by a different gradient coil that can respond slightly

differently to the applied current). In order to calculate αi, we thus need to measure

the gradient ramp times for the gradient amplitudes we used for imaging in all three

gradient directions (see appendix A for a table of the measured gradient ramp time

values).

Of course, the actual waveform is more complicated, with curvature during the

ramp, overshoot at the top, and then decaying oscillations (see figure 4.4). The quan-

titative comparison of micro-CT data to MR images that assume our schematic model

(see the next section) suggests that these high frequency oscillations may be safely

ignored for our conditions. In our model, we also ignore the small displacements from

the ideal ~k-space grid that occur when one gradient component turns off, and another

turns on (e.g., while switching from Gz to Gy). Since our current method of Cartesian

sampling only requires at most 2 switches of gradients (i.e. from Gz to Gy and from

Gy to Gx), these are fairly small perturbations that we can safely ignore. We have seen

evidence that these displacements cannot be ignored when we switch the gradients
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Figure 4.3: A schematic of the gradient transient. For best results, the gradient should
be constant during “B”, and during each 10µs data acquisition window (the small
purple rectangles at the beginning of “A” and the end of “C”). Ideally the gradient
transient would be like the dotted blue line and switch instantaneously immediately
after the pulse burst “B”. A better approximation of the gradient transient is given
by the dashed green line where there is some delay before the gradient transient starts
(approximately 6µs) after it is called and there is also some time for the gradient
ramp to take place (< 60µs for the “ramp-off” mode and small gradient amplitudes
we typically used). An even better model for the gradient transient takes into account
the gradient low-pass isolation filter through which the current flows before arriving at
the gradient coils. This adds an extra 11µs delay and is given by the black solid line.
This is the final model used to calculate the effective gradient factors for scaling the
images presented here.

multiple times (which will be discussed in the next chapter).

Imaging Time

Another important factor of MRI of solids is the imaging time. This is much longer

than conventional MRI of 1H in water due to the much longer T1 in solids. Each pseudo-

FID we acquire is a distinct experiment requiring time, Trep, per repetition. For 31P

MRI this repetition time can be from 4s (in soft tissue) to 60s (in dry bone mineral),

compared to Trep in milliseconds for liquid samples. The number of pseudo-FID’s we
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Figure 4.4: A measurement of the gradient waveform looking at the current com-
ing from the gradient amplifier. This data was taken from a screenshot of a digital
oscilloscope and shows the complicated waveform we are approximating in figure 4.3.

need to acquire in order to satisfy the Nyquist-Shannon sampling theorem (which we

will call ‘dense sampling’) is given by the equation:

Ntraj = Noct

(
Npnts

2

)
(Npnts + 1) (4.3)

where Noct is the number of octants being sampled and Npnts is the number of points

in each pseudo-FID. If we are sampling all eight octants of ~k space with Npnts = 32,

we then need Ntraj = 4224 distinct experiments and have to wait approximately 60s

between experiments. This imaging time would then be over 70 hours. In order to

speed up the imaging time by a factor of two, we often only sample the first four

octants (so Noct = 4) and use Hermitian symmetry to fill-in the remaining four octants.

In the next chapter we will explore speeding up imaging further by disobeying the

Nyquist-Shannon sampling criterion by intentionally undersampling ~k space. In order

to get a high quality image from undersampled data, an alternative to simple Fourier
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transformation must be used for the image reconstruction process.

4.1.3 Cartesian Sampling Results

The techniques described above were implemented on a animal MRI system located at

Yale University Medical School’s Magnetic Resonance Research Center (MRRC). Here

we share important 31P imaging results in both hard bone mineral and soft tissue. We

decided to image 31P since it is a 100% naturally abundant spin-1/2 nucleus with a spin

Hamiltonian in solids very similar to that of 29Si in crystalline silicon and 13C in C60

(with HZ ≥ HZZ). 31P also is an important constituent to many biomedical samples

(e.g. bone mineral and cell membranes), which provided very interesting samples to

image. Unlike conventional 1H MRI - which often uses T1 or T2 weighting to provide

contrast - all the 31P MRI shown here reveal the 31P density in each sample. The

addition of various contrast mechanisms will be explored in future work. It is also

important to note that our samples are all ex vivo to date because, for reasons of

animal and human patient safety, in vivo MRI cannot use the strong rf pulses and

rapid gradients changes shown in figure 4.1B. Consequently, we are initially focusing

on applications that can use ex vivo methods, such as our 31P MRI of bone. A recent

review [53] summarized 15 state-of-the-art methods to assess bone quality and listed

12 as primarily or exclusively ex vivo techniques. Our data indicate that determining

the 31P microstructure will provide important new information that complements what

can be learned from these existing techniques.

Imaging Bone Mineral

Bone is a composite material [54], containing approximately 45% bone mineral by vol-

ume [55]. Bone mineral is similar to calcium hydroxyapatite (i.e., Ca10(OH)2(PO4)6),

but it is less crystalline, and it has a unique stoichiometry [23]. The spatial distri-
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bution, composition, and quantity of bone mineral are primarily responsible for the

compressive strength and stiffness of bone [54, 55, 23]. While a few 31P MRI studies

have successfully targeted in vivo [23, 24, 25] and ex vivo [23, 22, 56, 57] bone, the

broad MR spectra have limited the achievable spatial resolution to no better than 0.5

mm [57], and more typically in the range of 2 mm. There is great interest in probing

the internal composition of bone on the sub-0.1 mm length scale [53, 58], both to study

normal features (see figure 4.5) and to look for signs of disease.

Figure 4.5: Structure of the bone, courtesy of http://training.seer.cancer.gov/
anatomy/skeletal/tissue.html

Despite the obvious importance of the mineral component to the biomechanical

properties of skeletal tissue, few useful non-destructive technologies are available to

evaluate changes in its chemical structure. Micro-computed tomography (micro-CT)

measures the X-ray linear attenuation coefficient, which provides high spatial resolution

3D imaging of the electron density (dominated by calcium in the bone mineral) but

does not reveal the chemical information provided by MRI. In bone mineral, up to 14%

of the phosphate groups are replaced by carbonate groups, and several recent Fourier
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transform infrared (FTIR) and Raman spectroscopy studies [59, 60] have reported a

spatial dependence of the CO3:PO3 ratio that correlates with bone tissue age, as well

as with nano-indentation measurements of indentation modulus and hardness. In the

imaging results below, we have pushed the 3D 31P MRI spatial resolution down to the

sub-0.4 mm length-scale. With the improvements discussed in the final chapter of this

thesis, we fully believe our approach has the potential for sub-0.1 mm spatial resolution

for ex vivo bone samples.

Dry Bovine Bone

The images in figure 4.2D-E, obtained using our pulse sequence, show the features of

a sample composed of two dry blocks of bovine cortical bone separated by a 1.1mm

masking tape spacer. These blocks were cut from a segment of white, cleaned bovine

femur (a natural dog chew purchased at the local Petco). The upper block has one

thru-hole, and the lower block has two partial holes made by a #80 drill bit (0.343mm-

diameter). Teflon tape was wrapped around the outside of the two-block assembly to

hold it together and to center it in the solenoidal coil. The threshold value chosen for

the isosurface plot and 2D slice in figure 4.2 gives a clear view of the hole but does not

depict the outer-surface of the blocks. However, after checking various 2D slices and

different isosurface values, the image does match the spatial dimensions of the sample.

These findings are consistent with our estimate of the spatial resolution of 0.428 x 0.428

x 0.353mm3, the best yet reported for 31P MRI in bone.

This demonstrates that the achievable spatial resolution of the image is no longer

limited by the natural linewidth. For comparison, if we were to implement ‘solid-

state 31P MRI’ [57] on our system using the same 30mT/m gradients, the natural

31P linewidth would limit the spatial resolution to (5.9mm)3, which is larger than the

entire volume shown in Fig.4.2D. Since quadratic echo line-narrowing overcomes this
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limitation, the achievable spatial resolution of our technique is limited only by the

specifications of our MRI system.

Wet Pork Rib

Our approach works just as well on wet, marrow-filled bones. In fact, the 1H in the

water produces fluctuating magnetic fields which make the measured T1 of 31P in

the wet samples shorter, decreasing the imaging time by a factor of two compared

to dry bone. Our 31P MRI has been applied to store-bought sections of a pork rib

(mostly cortical bone), shown in figure 4.6A. The pork rib was imaged in a sealed

plastic cryotube filled with phosphate buffered saline (PBS) solution to keep the sample

hydrated. The thick outer shell of cortical bone that surrounds the marrow space

dominates both the 3D surface plot (figure 4.6B) and the 2D slice (figure 4.6C ). The

spongy trabecular bone in the marrow space is not visible because the density of 31P

in the trabecular bone is smaller than the isosurface value of the phosphorus density

plotted. Given the relatively low spatial resolution, (1.19mm)3, using a smaller value

of phosphorus density for the isosurface just fills in the marrow space entirely and the

microarchitecture of the trabecular bone cannot be resolved.

As a validation of our approach and analysis, the same pork rib sample was imaged

using micro-CT, which is considered the gold standard for obtaining a 3D volumetric

map of the bone mineral. The micro-CT data was measured by a µCT 35 (Scanco

Medical), using 55kVp for the peak energy, 500ms integration time, and 37µm (iso-

metric) resolution/voxel size. We then Gaussian broadened this image to match the

31P MRI resolution, which blurs our the trabecular bone network in the marrow space.

Figure 4.7 shows a coregistration of our 31P MRI isosurface plot (figure 4.6B) with an

isosurface plot of the broadened micro-CT image. These look fairly similar (suggesting
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Figure 4.6: Images of the ex vivo pork rib sample. (A) Photo of the marrow-filled
pork bone sample. (B) Isosurface rendering of the 3D image of 31P in pork rib in PBS
solution. The isosurface value is 33% of the maximum signal value and shows the thick
cortical bone ring. The spatial resolution is (1.19mm)3 and the imaging time was 35.2
hours. (C ) A 2D slice of the 3D data shown in B (zero-filled by a factor of two) with
thickness of 0.595mm.
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our calculation of the effective gradient factors, with the 11µs delay from the in-line

filter, scales the image correctly), but they are not identical, which is to be expected

at this early stage. Further improvements in the spatial resolution of our technique

should start to reveal local differences between these two maps.

5mm 

Figure 4.7: Isosurface rendering of the Gaussian-broadened 3D micro-CT data (red)
registered with our 31P MRI data (yellow) as shown in figure 4.6B. The isosurface value
chosen for the micro-CT data is 10% of the maximum signal value, while for the 31P
MRI data the isosurface value is 33% of the maximum signal value, and shows the
thick cortical bone ring of the wet pork rib.

Rabbit Femoral Head

We wanted to see if we could resolve the trabecular bone if we had higher resolution,

and thus chose a smaller sample (to make better use of our FOV) as well as a sample

that is mostly trabecular bone. The rabbit femoral head (the “ball” at the top of

the femur), shown in Figure 4.8A, met both these requirements. It has a very thin,
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nearly transparent layer of cortical bone covering the pink bone marrow region which

is primarily trabecular bone. This sample was also imaged in a sealed plastic cryotube

filled with PBS solution. The interconnected plates of trabecular bone on the interior

of the rabbit femoral head (seen in the micro-CT 2D slice shown in figure 4.8B) are

clearly visible in both the 3D surface plot (figure 4.8C ) and a 2D slice (figure 4.8D),

given the higher spatial resolution of this data set, approximately (0.46mm)3. A series

of 2D slices (figure 4.8E-J ) show a virtual sectioning of the 3D rabbit femoral head

data set, which demonstrates the potential of this technique to provide non-destructive

quantitative maps of phosphorus on the interior of complex 3D samples. There are good

reasons the trabecular bone as seen in the MRI images do not replicate exactly the

microarchitecture seen in the micro-CT images. The micro-CT has greater resolution

(by a factor of 10), is imaging the electron density of the sample (dominated by the

calcium), and has a different orientation than the 31P MRI images.

Imaging Soft Tissues

As another potential biomedical target, soft tissues have phosphorus concentrated in

the membranes, metabolites, RNA and DNA of cells (figure 4.9). This leads to a

complicated, multi-peak 31P MR spectrum (including a broad membrane peak and

narrow metabolite peaks), which would ordinarily be a poor choice for high-resolution

MRI [64]. However, our quadratic echo pulse block narrows the entire 31P spectrum into

a single peak, enabling high-resolution imaging. Using our sequence, we have carried

out the first, to the best of our knowledge, 3D 31P MRI on a variety of ex vivo soft

tissue samples, including fixed neural stem cell-endothelial cell hydrogel co-cultures,

mouse liver, mouse heart, and a variety of mouse brains. Figure 4.10 shows the ex vivo
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Figure 4.8: Images of the ex vivo rabbit femoral head sample. (A) Photo of the
rabbit femoral head sample. (B) 2D slice of micro-CT data. The 2D resolution is
(0.0185mm)2 and the slice thickness is 0.0185mm. (C ) Isosurface rendering of the 3D
image of 31P in rabbit femoral head in PBS solution. The isosurface value is 60% of
the maximum signal value and shows trabecular bone. The spatial resolution is 0.458
x 0.458 x 0.422mm3 and the imaging time was 70.4 hours. (D) A 2D slice of the 3D
data shown in figure 4.6C (zero-filled by a factor of four) with thickness of 0.115mm.
Note that these axes are different from those used in B and the orientation of the bone
is different than in both A and B. Here the ‘flat end’ of the bone is on the right edge.
(E ) - (J ) Multiple 2D slices (each 0.115mm thick) cutting along the x-axis going in
the positive x-direction (with a 0.458mm step size) through the 3D data set shown in
C, using the same color scale and FOV as in D. The 2D slice shown in D is between
slices shown in G and H.
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Figure 4.9: Estimated number of 31P nuclei in a ‘typical’ 20µm human cell. (A)
The estimated number of 31P in membranes, by location [61]. The blue dashed line
is the estimated number of 31P in DNA and RNA (≈ 2 × 1010) [62]. (B) The sum
of all parts in A is the total number of 31P in membranes (red bar) for typical cell
(≈ 5.5× 1011), which is more than a factor of three times the 31P content measured in
brain metabolites (green bar [63]). An independent estimate of the brain membrane
31P content (green circle [63]) is consistent with ours. As comparisons, the 1H content
of mobile water in the cell [61] is ≈ 9 × 1013, which matches the 31P content of the
same amount of bone mineral.

3D 31P MR image of a mouse brain in PBS. This is a functionally different kind of

MR image, since conventional 1H MRI probes the intracellular and extracellular free

water [51]. A rough calculation of the phosphorus reservoirs in a typical cell suggests

that the membrane signal represents approximately 75% of the total 31P signal for our

MRI of solids approach, depending on the density of mitochondria (figure 4.9). This

membrane signal is rarely studied due to its broad MR linewidth but may provide new

insights into cellular and tissue function that compliments the information revealed by

1H MRI. It is important to note that the total 31P content of a cell is approximately
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Figure 4.10: 3D 31P MR image of an ex vivo mouse brain. (A) Isosurface rendering
of the 3D image of 31P in mouse brain in PBS solution. The isosurface value is 50% of
the maximum signal value and shows the brain stem on the left. The spatial resolution
is (1.33 mm)3 and the imaging time was 88.7 hours. (B) A 2D slice of the 3D data
shown in A (zero-filled by a factor of four) with thickness of 0.332 mm. The cut-off for
the minimum of the color-scale is the isosurface value used in A. (C ) Two isosurface
renderings of the 3D image of 31P in mouse brain in PBS solution. The highlighted
inner isosurface value is 70% of the maximum signal value and the outer isosurface is
the same as in A. (D) Three isosurface renderings of the 3D image of 31P in mouse
brain in PBS solution, now rotated by 90◦ relative to those shown in A and C. The
highlighted most inner isosurface value is 90% of the maximum signal value, the middle
isosurface is the same as in C, and the outer isosurface is the same as in A.
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1% of the 1H in free water, so practically speaking, this means that less dense solid

samples (i.e. soft tissues) will require larger voxel dimensions or more signal averaging.

Fortunately, the T1 of 31P soft tissues is dramatically shorter (by over a factor of 10)

compared to the dry bone samples, so extra averaging can be done without greatly

enhancing imaging time.

4.2 MRI of Solids Using Radial Sampling

In this section we explore using radial sampling of ~k space instead of the conventional

Cartesian sampling. Radial sampling has many potential benefits compared to our

Cartesian sampling method discussed above.

One potential benefit of the radial sampling approach is that we do not change the

gradient directions for a given experiment (which provides points along a radial ‘spoke’).

Our Cartesian mapping changes the gradients at most two times (eg. switching from z

gradient to y gradient and then y gradient to x gradient, as in figure 4.1). Every time

the gradient is switched, there is an extra displacement in ~k space due to ramping down

the previous gradient and ramping up the next gradient (see figure 4.3). This small

displacement is not taken into account in our assumption of sampling evenly spaced

grid points in ~k space. Fortunately, it appears this assumption appears to work fairly

well in our current Cartesian sampling images, but it could introduce a small artifact

that radial sampling will not have. For example, we have tried a random walk around

the Cartesian grid of ~k space which had many more of these small displacements due

to changing gradient directions. This resulted in noticeable destructive interference as

the distinct 1D pseudo-FIDs were co-added to fill the ~k-space grid (because each set of

data were sampling slightly different ~k-space points) and no image could be seen even

from very high SNR data.
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Another potential benefit of radial sampling compared to our Cartesian sampling

method, is that we are not oversampling particular points in ~k space (other than the

origin, where we should have the most signal anyways). In our Cartesian sampling

method, we oversample both the z axis and the yz plane - leaving well-defined regions

with much higher SNR. This could cause artifacts in the image (which is very sensitive

to any regular structures in the ~k space data).

One final potential benefit of radial sampling is the ability to produce high quality

images even when not taking all the required ~k-space points according to Nyquist-

Shannon sampling theorem (i.e. sparse sampling). We discuss this further below in

the section about dense versus sparse sampling. This could prove useful as part of our

strategy to speed up imaging, which we will explore further in the next chapter.

4.2.1 Radial Sampling of k Space

Much like Lauterbur’s original MRI approach [32], radial sampling of ~k space is done

by applying gradients that are linear combinations of the x, y, and z directions (see

figure 4.11) such that

G2
x +G2

y +G2
z = G2, (4.4)

where G is the desired gradient amplitude. We still sample starting from ~k = (0, 0, 0)

but now we are acquiring equally spaced points along some radial spoke in ~k space

whose direction is determined by the particular linear combination of gradients applied.

Once the desired number of points are acquired along a given radial spoke, we wait

some time longer than T1 for the spin magnetic moments to equilibrate and then take

the next data set with a different radial gradient direction (determined by a new set

of Gx, Gy, and Gz).
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Figure 4.11: Example pulse sequence diagram for a single scan using radial sampling,
in this case using the linear combination Gz = 0.75G,Gy = 0.43G, and Gx = 0.5G,
where G is the desired gradient amplitude.
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Figure 4.12: A 2D example of what three radial 1D frequency spectra would look
like for an image offset by x and y effective frequency offsets using our line-narrowing
method on a circular phantom. (These ‘effective’ frequency offsets are different from
the applied frequency offsets due to our pulse sequence leaving only ≈ 1/3 of the
frequency effective over each pulse block). The ‘artifact’ region is at the origin of the
frequency spectrum and marked by red lines in each of the 1D spectra. The avoidance
of the artifact region by offsetting the image works well when applying gradients in
only the x or y directions (as in Cartesian sampling), but fails when applying gradients
in directions like y = −x. An approximation of what the 1D spectrum would look
like when overlapping the artifact region is given in this case. No matter how we
offset the image, there will always be some gradient directions where the image will be
overlapping the artifact region.
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In addition to following radial spokes in ~k space instead of ‘bent’ Cartesian trajec-

tories, another main difference of radial sampling compared to our Cartesian sampling

method is our use of the offset frequency. In the Cartesian case, having the offset

frequency (foffset) is useful for positioning the center of our image in artifact-free re-

gions of our FOV because this position is mainly determined by the magnitude of the

frequency offsets in the x, y, and z directions if the sample is originally placed in the

center of the magnet. For radial sampling, we can imagine doing a similar positioning

of the image in the FOV to avoid artifact regions by now applying the offset frequency

whose magnitude is given by

offset frequency =

(
Gx

G

)
foffset,x +

(
Gy

G

)
foffset,y +

(
Gz

G

)
foffset,z. (4.5)

However, if we do this offset, there will still always be some 1D scans of the sample

where the image will be crossing high-artifact regions, since now we are not always

only going in just x, y, or z directions, but taking diagonal slices as well (see figure

4.12). A solution to this problem is to just have all the radial 1D spectra shifted by

the same common offset frequency (as shown in the pulse sequence diagram in figure

4.11). This way no matter what gradient direction is used, every spectrum is offset

from the artifact region by the same amount. However, we have to correct for this

offset frequency in our reconstruction before combining all the 1D spectra because

we need the image location to be consistent throughout all the 1D spokes. Without

correction, each spectrum is offset by the effective offset frequency in the direction

determined by the applied gradients (see figure 4.13), which means the spatial location

of the image appears to be different for each 1D spectrum. To do this correction,

before reconstruction we multiply each radial spoke’s time-domain dataset by a phase

factor which will reverse the effect of the known effective offset frequency, causing all
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Figure 4.13: A 2D example of what eight radial 1D frequency spectra would look
for a circular phantom if using a common frequency offset, as done during our radial
sampling method. Each 1D spectrum is offset by the same effective frequency (given
by the black line). In this way the artifact at 0 Hertz will be avoided no matter what
gradient direction is used. However, we must reverse the effect of this offset before
image reconstruction so that all 1D spectra share the same center.

the artifact-free radial 1D spectra to now be centered about their common origin.

Isotropic Sampling of 3D ~k Space

To ensure that we are sampling ~k space isotropically. we choose the gradient directions

such that the end-points are uniformly distributed on the surface of a unit-sphere

centered at the origin of ~k space (see figure 4.14). However, since we are always

sampling points with equal spacing along the radial direction, the sampling of 3D ~k

space goes as 1/~k
2

in the radial direction (see figure 4.15 for 2D depiction). This

actually works to our advantage because most of our signal is at low ~k values and the

noise is at higher ~k values. However, we must take this oversampling into account in our

regridding process when we reconstruct the data (which will be discussed later). The

following discussion shows how we determine the gradient directions by approximately
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Figure 4.14: A depiction of how we are approximately uniformly distribute points on
the surface of a sphere in ~k space. These points will be used to determine the gradient
directions applied for radial sampling of ~k space to ensure we are sampling isotropically.
Each gradient direction is then given by the vector pointing from ~k = (0, 0, 0) to the
given point on the sphere.

uniformly distributing points on a sphere.

First we are going to mark off L equal segments along the prime meridian of the

sphere using L−1 points plus the two endpoints at each of the poles. This means that

δθ = π/L where θ is the angle measured from the z axis (parallel with the ‘north pole’

in this description and in figure 4.14).

At each of these points along the meridian, (eg. at a particular θ` = `π/L), we can

imagine swinging the radial vector around in the φ direction to create a circle with

radius r sin θ` (see figure 4.14). In order to have an approximately uniform distribution

of points along the surface of the sphere, we need to determine the number of points

along this circle, M`, needed for each given θ`, since we will want fewer as the circle

gets smaller (eg. we approach the poles) and more as the circle gets larger (eg. we
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Figure 4.15: A depiction in 2D of how we would be sampling ~k space. Even though
our gradient directions will be isotropic, since we acquire points with equal spacing in
the radial direction, the sampling of ~k space goes as 1/k in the radial direction for the
2D radial sampling depicted here, and 1/k2 for 3D radial sampling. This oversampling
will be taken into account during our reconstruction process.

approach the equator). These points will each have a different φ spherical coordinate

and if we have them equally spaced then δφ` = 2π/M`. Since the arc-length of the

circle at each θ` scales with sin θ`, M` must also scale with sin θ`. We also know that in

order for the density of points to be the same in both the φ and θ directions, M` = 2L

at the equator (when θ` = π/2), so the general formula for M` is given by:

M` = 2L sin θ`

= 2L sin

(
`π

L

)
.

(4.6)

The M` = 2L value at the equator (θ` = π/2) comes from the following calculation

which ensures that the number of points around the circumference of the sphere in the

φ direction matches that in the θ direction. Above we noted there are L − 1 points
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plus the two endpoints along the full π extent of the prime meridian of the sphere, for

a total of L + 1 points. Doubling this to find the total number of points around the

full 2π of the circumference of the sphere in the θ direction (and subtracting 2 because

we have double-counted the points at the poles) gives the 2L value for the number of

points around the entire circumference of the sphere.

If we desire to know the total number of points on the sphere we need to sum M`

over all L− 1 values of θ` and add in the 2 points at the poles to get:

Total number of Points = 2 +
L−1∑
`=1

M`

= 2 +
L−1∑
`=1

2L sin

(
`π

L

)
.

(4.7)

There is also a degree of freedom not discussed above where you can arbitrarily

rotate the M` points at a given θ` by some δ` angle to try to spread the points more

uniformly over the sphere (and get rid of the pattern of always having points along

the meridian at φ = 0). However, when you get rid of patterns in one place, you are

probably causing patterns to emerge elsewhere, so for simplicity’s sake, we just had

the first M` point always start at φ = 0. We could contemplate having δ` be some

randomly generated angle we keep track of for every data set, but this might be a level

of complexity that is unnecessary unless we see artifacts stemming from oversampling

the φ = 0 meridian.

Dense versus Sparse Sampling

As of yet, there have been no limits set on what values L can have (though presumably

it should be a positive integer greater than 1). Eventually, this radially sampled data

will be regridded onto a Cartesian grid with isotropic spacing given by the average of

85



the (in general, anisotropic) spacing along each axis of ~k space,

δk =
δkx + δky + δkz

3
(4.8)

where

δki =
αiγG

2π
δt (4.9)

where αi is the effective gradient factor in the i-direction, γ is the gyromagnetic ratio,

G is the maximum gradient amplitude applied, and δt is the sparse dwell time. Note,

even if G and δt are held constant, the αi parameter usually introduces anisotropy.

For ‘dense’ sampling, we want to have at least one measured ~k-space point from

our radial sampling map onto every ~k-space point along the chosen Cartesian grid. In

order for this to happen, the maximum arclength between two adjacent rays along the

sphere is the grid-spacing of the Cartesian grid, δk. The angle between two adjacent

rays along the θ-direction is given by π/L and we can approximate the length of a ray

to be ≈ (Npoints − 1)δk. This gives an approximate limit on how small L can be:

δk &
π

L
(Npoints − 1)δk, (4.10)

→ L ≥ π(Npoints − 1), (4.11)

where Npoints is the number of sparse points taken along each ray (including the t = 0

point) and the image size is then 2Npoints × 2Npoints × 2Npoints. Ultimately, spatial

resolution, δx, is given by:

δx =
1

2Npointsδk
. (4.12)

For higher spatial resolution (smaller δx), increasing Npoints requires a larger L for

dense sampling, which will increase imaging time. Increasing δk by increasing the
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gradient amplitude, G, is limited by fitting the entire sample in the given FOV (or, in

our case, a single octant of the FOV because we try to avoid the artifact at the center

of the FOV) and also how fast we can change the gradients between our pulse blocks.

Increasing the sparse dwell time has been done (often to help fit in larger gradients),

but this involves changing timing in our pulse sequence (usually by increasing τ) which

becomes less effective the larger the space between pulses, so finding a good balance is

necessary.

With the dense sampling criterion given by equation 4.11, taking a dense image

using all eight octants of ~k space would take about 1.86 times longer than using our

current Cartesian sampling procedure. However, there are good reasons to suggest that

radial sampling would be a prime candidate for sparse sampling of ~k space. Sparse

sampling will be the case when L < π(Npoints − 1), so not every ~k-space point on

the Cartesian grid will have a corresponding measured ~k-space point in the radially

sampled space. The gaps will be in the large ~k regions, where we should have less

signal and the lack of dense sampling should not be so apparent. These gaps will also

be isotropically spread about, so we will not have to worry about large coherent artifacts

due to particular regions being sampled more than others. For more information about

practically implementing these radial sampling procedures, see appendix B.

4.2.2 Radial Sampling Analysis

When doing radial sampling of ~k space, a slight modification to the analysis procedure

is needed since now we are no longer uniformly sampling onto a rectilinear grid (required

if we desire to use FFT reconstruction of the image). The most common way to modify

the analysis is to ‘grid’ the radially acquired data to a uniformly sampled rectilinear

grid by convolving the measured data by some smooth, finite function [51]. Since the

expected image is compact (i.e., it is zero outside some finite region), the sampling
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theorem states that the ~k-space value at any location can be calculated exactly by

convolving the measured values with a sinc function, given that the ~k-space values are

sampled at or greater than the Nyquist frequency. However, due to the infinite extent

of the sinc function, computing the ~k-space data at every new ~k-space point requires

multiplication of the sinc function by all measured ~k-space values. Computationally,

this is not very practical. In practice, the sinc function is then usually replaced by

a finite-width convolution function [51]. Since we are now convolving with a finite

convolution function, there will be some aliasing inside the FOV in the resulting image.

This aliasing is greatly reduced by interpolation of the ~k space by some interpolation

factor, β, (usually a factor of two to keep the power of two size requirements for FFT

purposes) so that the image FOV is increased by the interpolation factor and the

excess amount (with most of the aliasing features) can then be discarded. This section

will discuss gridding in general and then the practical implementations we use for the

convolution function, density compensation, and interpolation in particular.

Gridding Basics

A convolution-based interpolation scheme is popular for regridding since it is relatively

fast to execute while reducing artifacts. To discuss how this gridding is done using

convolution, let’s begin with the 1D definition of convolution,

(f ∗ c)(x) =

∫ ∞
−∞

f(x′)c(x− x′)dx′, (4.13)

where some function f(x) is being convolved with a convolution function c(x). Note

that this integral need only be evaluated over the region where c(x) is non-zero. This

convolution function is usually chosen to be a smooth window-function of finite full-

width, w. For some discretely sampled nonuniformly spaced ~k-space data s(kj), con-
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volution can be approximated by replacing the integral with a sum such that the

convolved, uniformly spaced data set sc(k) is given by:

sc(nδk) =
∑
j

s(kj)c(nδk − kj)δk(m)
j , (4.14)

where n is an integer and δk is the grid spacing for the new uniformly sampled data. The

factor δk
(m)
j is the density compensation factor for the measured data that corresponds

to the discrete representation of the differential length element dk for the nonuniformly

sampled data. Since we are using a finite-width convolution function, we only need to

sum over measured points kj that are located within w/2 of each regridded point nδk.

Once we have our uniformly sampled regridded ~k-space points, we can do an FFT

to get the spatial dataset, Sc(nδx). However, this is still not our final image since

convolving with c(k) in the ~k-space domain has the effect of multiplying our desired

final image with the Fourier transform of the convolution function, C(x). We then get

our final image by dividing Sc(nδx) by C(nδx).

Kaiser-Bessel Convoluting Function

Much work has been done on finding an optimal convolution function [65], with the

consensus being the Kaiser-Bessel function which, in 1D, can be defined as:

KB(k) =
I0(B

√
1− (2k/w)2)

I0(B)
RECT

(
2k

w

)
, (4.15)

where I0(x) is the zeroth order modified Bessel function of the first kind, w is the width

of the function (usually as a integer multiple of δk, B is a dimensionless free scaling
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parameter, and RECT(u) is a rectangle function given by:

RECT(u) = 1 |u| ≤ 1

0 |u| > 1

(4.16)

For our 3D radial sampling case, we used a spherical Kaiser-Bessel function defined as

KB(kx, ky, kz) =
I0

(
B
√

1− 4(k2
x + k2

y + k2
z)/w

2
)

I0(B)
RECT

(
2
√
k2
x + k2

y + k2
z

w

)
. (4.17)

B mostly controls the shape of the Kaiser-Bessel function and its decay towards zero.

One can find optimal values for B for given widths w and interpolation factors β [65,

66, 67] which reduce image artifacts. Since Beatty [67] gives a nice analytic expression

for B for any interpolation factor, β, and also gives very similar results to those of

Jackson [65] and O’Sullivan [66], we used their expression,

B = π

√
w2

(∆k)2β2

(
β − 1

2

)2

− 0.8. (4.18)

The continuous Fourier transform of the Kaiser-Bessel convolution function (needed

to get the final image) has a simple analytical form, but in practice we used the discrete

FFT of the analytic expression of the Kaiser-Bessel function, since the discrete FFT is

what is really being used during our reconstruction.

Density Compensation

Here we will discuss how to find the appropriate density compensation factor for the

measured data, δk
(m)
j , to make up for non-uniform sampling in the radial direction.

The density compensation is, in effect, the volume surrounding each sampled ~k-space

point in 3D. In spherical coordinates, this differential volume element is k2 sin θdθdφdk.
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For the discrete case, this can be approximated by

δk
(m)
j = k2

j sin θjδθjδφjδkj. (4.19)

From previous discussions, we have both δθj = δθ = π/L and δkj being constant

for all sampled points. Since we do not care about overall scale-factors, we can thus

ignore their input into the density compensation factor. However, δφj = 2π/Mj =

2π/(2L sin θj) is dependent on the sampled point. We then get for the density com-

pensation factor:

∆k
(m)
j = k2

j sin θj
2π

2L sin θj
= k2

j

π

L
. (4.20)

Since constants do not matter, the most commonly cited density compensation factor

for 3D radial sampling is k2
j .

However, this density compensation factor has a big problem in practice. One can

easily see that by multiplying the radially sampled data by this factor of k2
j , we will

get zero for our ~k = (0, 0, 0) point, which is the point with our highest signal. This

comes from taking a continuous distribution and using it for discretely sampled data.

For continuous data, the density of points does tend to ∞ as you approach ~k = 0,

but that is clearly not the case for discretely sampled data (see, for example, figure

4.15). The big question is then: how should we then correctly determine this density

compensation factor?

A majority of articles never mention or gloss over this ‘~k =0 problem’ and just

state the common k2
j density compensation factor, but there are a few people who have

directly confronted it [68, 69, 70, 71, 72, 73, 74]. Many just treat the ~k =0 point sepa-

rately and make the density compensation factor at that point some constant adjusted

to better approximate the convolution integral [69]. Others find a more accurate density

correction array by calculating the analytical expressions which should approximately
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give the continuous theoretical value of k2
j when using the discrete Fourier transform

(done in 2D for CT reconstruction by Ramachandran and Lakshminarayanan [68] and

applied to 2D MRI by Joseph [71]). We have used this method to do the same in 3D

(see appendix C for calculations), and this has the effect of approaching k2
j for higher ~k-

values, but then converges to a non-zero value for lower ~k-values. In practice, we found

using this density compensation factor gave a spherical shell of data with higher-values

than expected at the edge of the sampled ~k-space. This was most likely due to our data

not being densely sampled (which this density compensation factor assumes) and the

large ~k-space points were then being overly compensated. For our sparsely sampled

data, it would make sense that this density compensation factor would flatten-out at

the point where the spokes are no longer within an ∆k distance from each other. We

thus needed a more sophisticated way to take into account our sparse radial sampling

of ~k space.

There have been other sophisticated methods to calculate the density compensation

factor for any arbitrary sampling of ~k space, including using Voronoi diagrams for 2D

imaging to estimate the 2D area about each sampled point [73] and numerical iterative

methods [72, 74]. We looked more closely at the more recent numerical conjugate

gradient method used by Bydder, et al. [74]. This approach looked promising because it

had been used for sparse radial datasets and had the expected ‘flattening’ of the density

compensation factor that would get rid of the spherical shell we were seeing using the

previous method. This method had previously been applied only to 2D images, so

starting there, we applied their algorithm and soon realized its impracticality for 3D

datasets, since it involves iteratively manipulating matrices whose sizes are dependent

on the number of measured points and the number of regridded points. Memory

problems were reached just doing a fairly low-resolution densely sampled simulated

dataset.
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Stepping back, we decided on a far simpler way of determining the density com-

pensation factor, in lieu of how we fixed a similar ‘oversampling’ issue we had with our

Cartesian approach. The density compensation factor is supposed to make up for the

fact that more measured points (weighted by the convolution function) contribute to

the regridded point for small ~k values than for larger ~k values. So while doing regrid-

ding, for each regridded point, we calculated the ‘density’ by summing the number of

points that contributed to the regridded point, weighted by the convolution function

being used (which gives higher weight to nearby points). After regridding is completed,

we then divide each of these regridded points by the calculated density. This gives the

desired ‘flattened’ shape of the density compensation factor of large ~k values, as well as

a non-zero value at ~k = 0. One can imagine using this same method for any sampling of

~k space for virtually no added computed time, which appears highly preferable to the

arduous numerical iterative schemes previously discussed. For a view of the difference

of our calculated density compensation factor (= 1/ calculated density) compared with

the one calculated using Ramachandran and Lakshminarayanan’s technique [68], see

figure 4.16.

Interpolation and Other Corrections

A common feature of regridding reconstruction is to use interpolation by a certain

factor (usually a factor of two to be able to use the FFT algorithm) [51]. This inter-

polation gets rid of the aliasing artifacts at the edges of the FOV in the image without

interpolation (see figure 4.17) and is done by cleverly making use of the properties of

the Fourier transform. Before regridding, each 1D radial spoke of data can be Fourier

transformed to give a 1D projection of the image along the direction of the applied

gradient for that given spoke. One can then increase the total number of points of
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Figure 4.16: A view of the density compensation factor along the kz axis. Our
method (in red) is compared to the density compensation factor in 3D calculated using
the method devised by Ramachandran and Lakshminarayanan [68]. Note that our

technique flattens out for large ~k values, which makes sense for our sparsely sampled
data.
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the spectrum by adding zeros to both sides. This is the same process as ‘zero filling’

as discussed in NMR basics, which is commonly used in the time domain in order to

interpolate and smooth a frequency spectrum. Here we are zero-filling in the spatial

domain, thus interpolating the original ~k-space data. Adding these zeros do not add

any information, but when you take the inverse Fourier transform to the original ~k

space domain, thanks to the wonders of Fourier transforms, you will now have dou-

ble the points, where the added points are now interpolations between the measured

values.

For our data, we have known artifacts that occur at the very center of our image

space and the edges of the FOV, even in the 1D projections. To reduce these artifacts

in the final regridded data (usually leading to spherical-shell-like features in the final

image), we correct these values while doing the interpolation on the 1D spokes. While

we are padding the 1D projection of the image for each spoke, we get rid of any artifacts

at the origin and the edges of our original FOV by replacing these points by the average

of its neighbors.

Also before regridding, we can do our correction for the applied offset frequency.

We do this by multiplying the ~k-space data by a factor of exp(−i2πfeff,offsett), where

feff,offset is the effective offset frequency. This frequency is found by looking at a few of

the 1D projections in different directions, and finding the common frequency to shift

these projections so that their spectra share a common center. This factor is ≈ foffset/3,

since the frequency offset applied, foffset, is effective for only ≈ 1/3 of each sparse dwell

time due to our pulse sequence.

Some care needs to be taken when doing interpolation to make sure you do not add

erroneous features to your data by padding in the image domain. When you find the

interpolated ~k-space data by taking the inverse Fourier transform, it might add some

95



-12x10-3

-8

-4

0

4

8

12

 z
 (

m
m

)

-12x10-3 -8 -4 0 4 8 12
 x (mm)

-12x10-3

-8

-4

0

4

8

12

 z
 (

m
m

)

-12x10-3 -8 -4 0 4 8 12
 x (mm)

 A

 B

Figure 4.17: A 2D slice of 3D MR image of small pork rib sample showing the image
(A) without interpolation and (B) with interpolation. With interpolation we get rid of
aliasing artifacts at the edges, but this interpolation also includes some line-broadening
of the image.
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signal in the high-~k regions, where it is known that the signal should be near zero. In

order to get rid of these effects, padding is often done along with a very slight line-

broadening of the interpolated data (i.e. muliplying the ~k-space data by a decaying

exponential). The decay constant is chosen so that it gives a broadening well below

the known spatial resolution of the image, so it will predominately affect the signal at

large ~k values which should naturally be close to zero.

4.2.3 Radial Sampling Results

The 31P MR images using radial sampling were taken on the 4T animal MRI system

at the Yale MRRC. As a proof of principle, we imaged a small pork rib sample (pre-

pared in the same way as the pork rib sample above, and seen in figure 4.17) using

both dense Cartesian and sparse radial sampling. The value chosen for L for radial

sampling was chosen to more closely match the imaging time of the radial sampling

(with a single average, but same repetition time) to that of the Cartesian sampling

(which was only sampling four octants and then averaged twice). The radially sam-

pled image still took a bit longer (with 5218 separate experiments compared to 4224

for Cartesian sampling). All other parameters of the pulse sequence were kept the

same. The analysis of the radial sampled image included interpolation by a factor of

two, regridding using a window width of 6δk and zero-padding by another factor of

two. Considering the different sampling and different analysis procedures, it is difficult

to do a direct comparison of the two plots except to see that the resulting image looks

similar (see figure 4.18). The radial image is broadened (as part of interpolation), so

the features are more smoothed out and the image has slightly lower spatial resolution

than the Cartesian image. However, considering that the radial image is only 43% of

the number of points required for dense radial sampling, this image looks very artifact
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Figure 4.18: Comparisons of Cartesian and radially sampled images of a small pork
rib sample. These images were taken at different times. The FOV, orientation, and
zoom-factor were chosen by eye to show a rough comparison. (A) Isosurface plot of
Cartesian sampled image. (B) Isosurface plot of radially sampled image.

free.
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Chapter 5

Imaging Solids Faster

In the previous chapter, we discussed our approach to doing high resolution MRI of

solids through the use of our quadratic echo line-narrowing sequence. This essentially

increases the effective T2 of the solid out closer to the T1 time (which is often in the range

of several seconds to minutes), enabling high spatial resolution. Unfortunately, the long

T1 time in solids, combined with the practical requirement to wait Trep ≈ T1 between

experiments, means that the imaging time for solids is very long (e.g. the image in figure

4.2 took 47.6 hours to acquire). One way to reduce the image acquisition time would

be to use Trep � T1 at the cost of signal-to-noise. This is definitely not desirable if we

are starting with smaller signal due to the smaller concentrations and/or gyromagnetic

ratios of the target nuclei (as compared to 1H in water). A second method extends the

pseudo-FID sequence of figure 4.1 to form a pseudo-echo, which is then hit by a pulse to

return spins back along the applied magnetic field. This driven equilibrium technique

[75] works best if the effective T2 is long enough so that the spins remain fairly coherent

throughout the image acquisition. We have some some preliminary results that this

technique may work using the quadratic echo line-narrowing technique, but have yet

to implement this technique for imaging (where all the gradients would have to be
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reversed as well to generate the pseudo-echo). There is certainly potential to explore

this technique further in future work.

The technique we believe may be the most useful method to speed up imaging is

the compressed-sensing approach to MRI or sparse MRI [76, 77]. Here one essentially

acquires only some of the points in ~k space that the Nyquist-Shannon sampling formula

demands. However, the ~k-space points that are measured are sampled in a pseudo-

random way such that the image artifacts due to undersampling add incoherently to

look more like white noise. One can then use clever image reconstruction techniques

to get the desired signal out of the resulting ‘noisy’ image. In this chapter, we discuss

our work implementing sparse MRI (section 5.1) as well as the development of a novel

reconstruction algorithm to reconstruct the desired image in a fast and computationally

efficient way (section 5.2 - which will be more technical). The final section (5.3) will

show the results using our reconstruction algorithm on sparsely-sampled MRI of solids

and multi-dimensional NMR data.

5.1 Sparse MRI

In this section we discuss the ideas behind sparse sampling (compressed sensing) and

how we implemented this sparse MRI approach to speed up image acquisition.

5.1.1 Sparse Sampling

To understand how sparse sampling (compressed sensing) works, consider the simulated

2D MR imaging experiment shown in figure 5.1. Here we have a physical object we

want to image (in this case, the Yale College crest shown in figure 5.1A). We then

apply gradients across the physical object to encode spatial information in the NMR

signal which we then discretely sample to fill up a Cartesian grid of ~k-space points
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(figure 5.1B). The data is only acquired in the diamond shown (the rest is zero filled)

to mimic how we would actually sample the points in 2D by using the same sampling

strategy we use to acquire the octahedron of ~k-space points in 3D (as discussed in the

previous chapter). A 2D FFT converts this ~k-space data into the image shown in 5.1E.

This image is a good approximation of the original object, but is not perfect since we

only sampled a finite number of ~k-space points.

Often in conventional 2D MRI, only one dimension of the N × N ~k-space data is

sampled in each Trep. Thus, filling this 2D grid of data requires N experiments that

each require another Trep waiting time. Thus, one way to go faster is to measure only

one out of every four columns of ~k-space data and leave the unmeasured points at

zero, as in figure 5.1C. This yields a factor of four speed up, but, unfortunately, the

FFT of this under-sampled data has very pronounced, coherent artifacts (figure 5.1F )

which compete with the desired image. To do better, we can break up the pattern of

zeroes by placing them randomly across the k-space data, as in figure 5.1D. As figure

5.1G shows, the resulting image artifacts are now incoherent and look like noise in the

background of the desired image. It is important to note that in this is a noise-free

simulation, so these ‘noise-like’ features in the image come purely from the incoherent

artifacts due to sparse sampling. If the incoherent artifacts are not too prominent, a

simple FFT of a sparsely sampled data set gives you a reasonable approximate image

in much less time.

These incoherent artifacts are less prominent if the image you are reconstructing is

fairly ‘sparse’ itself (meaning there is a small fraction of non-zero voxels in the image

that carry all the signal information). In our quadratic echo MR images, the signal is

purposely placed inside a single octant of the 3D eight-octant FOV, so we can make use

of simple FFT image reconstruction without introducing huge image artifacts (as we

will see in the results given in the next section). One can also potentially reconstruct
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the image without these artifacts using other, more elaborate reconstruction strategies,

which we will discuss further in the second half of this chapter.

5.1.2 Sparse Sampling Results

These results were taken using the same 4T animal MRI system as was used for previ-

ous imaging results at Yale University Medical School’s MRRC. Figure 5.2 shows the

sparse-sampling approach applied to the bovine bone sample from figure 4.2. 66 trajec-

tories, each with 32 acquisition windows, sample octant I of the original octahedron in ~k

space. To avoid artifacts due to anisotropic sampling, all three planes (xy, yz, zx) were

sampled equally by using three different loop patterns, {Z, Y,X}, {Y,X,Z}, {X,Z, Y },

each making up 1/3 of the 66 trajectories. For each loop pattern, the (Nz, Ny, Nx)

values are chosen randomly, subject to the total window number constraint. The tra-

jectories followed are depicted in figure 5.2A, and the corresponding surface plot of the

image following Fourier transformation (and zero-filling by a factor of four) is shown

in B. For this case, the ~k = (0, 0, 0) point is at one corner of a 32 point ~k-space data

cube, and the real part of the complex image is shown. This image was acquired in

only 88 minutes, a dramatic improvement over the 2,856 minutes of figure 4.2D. De-

spite our efforts to sample all three planes (xy, yz, zx) equally, it is still true that the

points along these planes in ~k-space are sampled more than points off these planes.

We believe these are the primary causes for the boundaries of the image to be slightly

smeared or elongated in all three directions, which you can mostly notice along the

x-direction in the image because this is the longest dimension of the sample.

Since we only sampled octant I in this case, we could not make use of Hermitian

symmetry for a purely absorptive, real signal. Instead there is a large dispersive imagi-

nary part as well. As a result, only the real part of the complex image data is shown in
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Figure 5.1: A simulation of 2D MRI, explained in the text. For a physical object
(A), the conventional ~k-space data set (B) yields a nice image in r space (E ). We

can go faster by measuring only 25% of the columns in ~k space (C ), but this leads
to pronounced, coherent artifacts in the image (F ). Using a 25% random sampling of
~k-space points (D) makes the artifacts due to zeroes appear as incoherent noise over
the desired image (G).
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figure 5.2, since the magnitude is distorted due to the dispersive imaginary component.

In later experiments, we sparsely sampled in all eight octants and made use of Her-

mitian symmetry so the image was purely real and absorptive. In those experiments,

smearing artifacts still appeared in the image, further suggesting that these artifacts

result primarily from our undersampling of ~k space.

A! B!

Figure 5.2: Sparse ~k-space mapping and the resulting image of the dry bovine
bone sample. (A) Depiction of the 66 randomly chosen sparse trajectories taken

through ~k-space to produce a sparse image. The three different loop patterns:
{Z, Y,X}, {Y,X,Z}, and {X,Z, Y } were used equally amongst the sparse trajecto-

ries. The loop pattern {Z, Y,X} means after starting at ~k = (0, 0, 0) we map Nz

points in the kz direction, then Ny points in the ky direction and Nx points in the kx
direction. For each loop pattern, (Nx, Ny, Nz) were chosen randomly subject to the
constraint that Nx + Ny + Nz = 31 so that there are a total number of 32 acquisition
points per trajectory. (B) The resulting image of the same sample imaged in figure 4.2

by taking the Fourier transform of the sparsely sampled ~k-space. The isosurface value
is 57% the maximum signal value. The imaging time was 88 minutes, compared to 47
hours for the dense sampling image in figure 4.2. The ‘smearing’ of the image is pri-
marily due to our pseudo-random sampling of ~k-space oversampling the kx = 0, ky = 0,

and kz = 0 planes compared to the rest of ~k-space.

Since we believe these ‘elongation’ artifacts are primarily due to our sampling not

being completely random, (e.g. certain points are sampled many times compared to
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other nearby points), one potential solution is to diverge from our Cartesian trajectories

where we always start along one axis, then move along another, and then finally step

out in the third direction. Instead, one might consider trajectories that are 32-point

long random walks along the Cartesian grid, random walks that never retrace steps,

or trajectories that mimic radial sampling but stay along Cartesian grid points. We

tried all these strategies, but quickly realized that the resulting images were useless

because the signal from the different trajectories were not adding coherently due to the

ignored shift in ~k space caused by switching gradient directions. We can ignore this

shift in the Cartesian sampling done in the previous chapter because we only switch

gradient directions for (at maximum) two times in a given trajectory. With these

other trajectories, one is potentially changing gradient directions at every step. We

calculated that the shift in the ~k-space position can be as much as δk/4 in the direction

of the turning-off gradient, as well as a factor of −δk/4 in the direction of the turning-

on gradient. If these shifts occur at nearly every step and is unique for every different

trajectory, these shifts become impossible to ignore, and we are no longer sampling

along a uniform Cartesian grid, but instead points nearby Cartesian grid points.

Trying to avoid these issues with sparse Cartesian sampling is what started us

on the path to try radial sampling of ~k space. Sparse radial sampling also causes

artifacts, but the sparse sampling is done in a uniform way such that these distortions

are spread uniformly along all directions and have less of a visible impact on the

image (as seen in the radial results in the previous chapter). For future work, one can

consider re-analyzing the more random Cartesian trajectory data taking into account

all the ~k-space shifts using our model of the gradient transients (discussed in the

previous chapter). We could then potentially use a regridding method similar to the

radial sampling analysis procedure to reconstruct the image. This may allow us to take

advantage of a more ‘randomly’ sampled data set, without the corresponding errors
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due to not sampling exactly along the Cartesian grid.

5.2 Reconstruction Algorithms

It is the use of the computationally efficient fast Fourier transform (FFT) for image

reconstruction (as described above) that introduces the extra sampling requirements

of the Nyquist-Shannon sampling theorem to produce an artifact-free image. Theo-

retically, using information theory, one only needs to measure as many points as are

non-zero in the image we want to reconstruct. For example, in the noise-free case, if the

image you are acquiring only has non-zero signal in a small number of the FOV voxels,

Nsignal � NFOV (where NFOV is the total number of voxels in the FOV), one need only

sample Nsignal points in ~k space in order to accurately reconstruct the image. We just

need an image reconstruction algorithm to uniquely determine the desired image from

the sparsely sampled data.

In MRI, there has been renewed interest in using compressive sensing (or sparse

sampling) approaches [76, 78] to speed up the acquisition of imaging experiments

because of the success of non-Fourier reconstruction algorithms like l1 minimization

[79, 80, 81]. Although l1 minimization can be recast as a linear program that can

be solved efficiently, these methods still require multiple matrix manipulations which

greatly reduces reconstruction speed compared to the FFT algorithm one can use with

a densely sampled data set. Similar reconstruction algorithms have been developed for

sparse sampling methods in multidimensional NMR [82]. These include l1 minimiza-

tion methods [83], as well as other regularization methods (e.g. maximizing entropy

through MaxEnt [84]). Despite the wide varieties of approaches, all these reconstruc-

tion methods yield very similar results with the same non-uniform sampled data set, so

the particular sampling scheme used remains a very important determinant of the re-
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construction quality [82]. These methods are also still very computationally expensive

compared to Fourier reconstruction, with reconstruction times on the order of N2
FOV.

In this section, we discuss a reconstruction method we developed to accurately recon-

struct MR images from sparse data in a computational efficient manner by making use

of the FFT and inverse FFT (IFFT) - so reconstruction time scales as NFOV logNFOV

- as well as known constraints on the image to fill-in the data we did not sample in ~k

space.

To develop such an algorithm for MR data, we were inspired by the iterative-

projections approach of Veit Elser [85] to solve the problem of determining the phase

of a complex signal when one only has the modulus of the Fourier transform and a set

of a priori constraints that the Fourier reconstruction of the object must satisfy. This

has since been applied to a variety of other reconstruction problems [86]. Elser’s itera-

tive ‘difference map’ algorithm unifies phase-retrieval strategies originally developed by

Gerchberg [87] and Fienup [88] into a single generalized algorithm. The mathematical

framework for these reconstruction algorithms has been developed only recently, but

these algorithms have been shown to correspond to classical convex optimization meth-

ods [89]. The particular form of Elser’s difference map used in this work reproduces

Fienup’s hybrid input-output map [88], but the more general form can be potentially

useful to optimize the difference map for different uses [85, 86, 90, 91].

An alternating projections algorithm called POCS (projections onto convex sets)

[92] has been used early in MRI to reconstruct phase information from limited, asym-

metric ~k-space data. Reconstructing sparsely-sampled MRI data has been done more

recently [93, 94] using a non-iterative generalized form of Gerchberg’s alternating pro-

jections algorithm [95]. This generalized approach finds the solution to a regularized

minimization problem, very similar to the minimization methods discussed above. The

benefits of our iterative projections approach to sparse image reconstruction are many
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fold: (1) it uses FFT and IFFT so large datasets can be handled very quickly, (2) once

you set up the projections, the image reconstruction is completely deterministic, and

(3) our algorithm is robust even for large noise and/or image artifacts.

5.2.1 Notation

Here we define some useful notation that will be used throughout this section. We

will have the target, dense ~k-space data represented by the complex-valued vector,

|T (~k)〉. This vector has a total of NFOV components for each of the voxels/points in

the data. For example, if we have a 3D Nx × Ny × Nz data set, |T (~k)〉 will have a

total of NFOV = Nx ∗ Ny ∗ Nz complex components, T ( ~kj), for each jth point in the

dataset. Here −Niδki ≤ ki ≤ (Ni − 1)δki for each ith dimension. The corresponding

target, dense image is represented by the complex-valued vector, |T (~r)〉. One converts

from |T (~k)〉 to |T (~r)〉 via the FFT and back again via the IFFT.

Our image domain projection expects a purely real image given by |T̃ (~r)〉, which

can be obtained from |T (~r)〉 by multiplication of a phase factor, as determined from

the Fourier shift theorem (to account for the position of the ~k = 0 point in |T (~k)〉).

For the general case, the (p1, p2, p3) component is given by:

T̃ (~r)p1,p2,p3 = exp(−i(φp1 + φp2 + φp3))T (~r)p1,p2,p3 (5.1)

where

φpi =
2π(pi − Ni

2
)(Ni

2
− ci)

Ni

, (5.2)

and pi = (0, 1, 2, ..., Ni − 1), and ci = 0 or 1 when the first point of the ith dimension

is acquired at ki = 0 or δki
2

, respectively. For our MRI data, which always samples the

~k = 0 point in all directions, ci = 0. For multidimensional NMR data (which we will

discuss later), ci can be non-zero depending on how the data was acquired.
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The sparsely-sampled ~k-space data will be represented by the complex-valued vector

|S0(~k)〉 = P̂0|T (~k)〉, where P̂0 is a projection that leaves alone the chosen sampled

points and sets all other points to zero. The corresponding sparse image-domain data

is given by |S0(~r)〉, with the properly-phased sparse data in the image-domain given

by |S̃0(~r)〉.

The sparsely-sampled data is our input into our reconstruction algorithm, which

runs iteratively. The reconstructed data at the nth iteration will be represented by

|Sn(~k)〉 in the ~k-space domain and |Sn(~r)〉 in the image domain. The properly-phased

sparse data in the image-domain is given by |S̃n(~r)〉. The final output of the algo-

rithm after Niter is given by |FNiter〉 = P̂2|SNiter〉 (where the P̂2 projection will be ex-

plained in further detail below) and the properly-phased output image is represented

by |F̃Niter(~r)〉.

5.2.2 Projections

In order to understand the algorithms given below, some simple definitions should be

stated. First, a projection is any map P̂ of a set such that P̂ ◦ P̂ = P̂ . If we have a

projection, we can talk about the space of points that are unchanged under the action

of the projection, or fixed points. For example, we can look at the action that maps a

point onto the x axis. We can see that this action is indeed a projection because once

a point is mapped onto the x axis, application of the action once more does not change

the result. Points along the x axis are examples of fixed points for this projection.

We use a priori knowledge to set up the two projections we use for our algorithms.

The first projection (P̂1) makes use of the fact that the MR image is a measurement

of a physical quantity, so properly-phased, noise-free data should give an image which

is real and positive. We also know the sample we are imaging has some known extent

within our FOV (particularly if we are confining the signal to within a single octant of
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our FOV, which we do in our 3D MRI in order to avoid spin-locking artifacts). We can

then set-up a ‘mask’ support region where inside we expect the signal to be non-zero

and outside the signal should be zero. We can even go farther to define known artifact

regions, and whether signal should be positive or negative within the signal regions. All

of these constraints on the image are enforced through the P̂1 projection in the image

domain. The second projection (P̂2) enforces the constraints in the ~k-space domain.

This projection simply resets any measured points in ~k space to their measured values,

leaving any unmeasured points alone.

5.2.3 Alternating Projections

The simplest algorithm of iterative projections, called alternating projections, is simply

to enforce one projection after another (e.g. P̂1, P̂2, P̂1, etc.) until applying projections

no longer changes the output image (so the algorithm has converged on a fixed point

for both projections). The alternating projection algorithm has a long history and is

also known as the Gerchberg-Saxton algorithm [87] or error-reduction algorithm [88].

A depiction of the alternating projections algorithm is shown in figure 5.3 where the

image we use as input to the reconstruction algorithm is the image acquired from sparse

sampling the simulated 2D data set shown in figure 5.1. The output image matches

nicely with the image acquired using dense sampling (5.1E ) and actually may have

even sharper features, because the use of constraints fills in ~k-space points beyond the

diamond of the dense dataset into the zero-filled region.

The alternating projections algorithm deterministically converges towards the near-

est point of closest approach or intersection of the two projection spaces. The projec-

tions we use for MR image reconstruction result in convex fixed point spaces, so there

will only be a single point of closest approach or intersection. For noise-free data, this
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Figure 5.3: How one would use the alternating projections reconstruction algorithm
to produce a high-quality image from a sparse image (such as, from figure 5.1). In each

iteration, we apply the known constraints in both r and ~k space, and use the resulting
output image as input for the next iteration. This deterministically evolves towards a
final image (right).

is the unique fixed point that is in common for both projections and gives the cor-

rect image solution. Thus, the alternating projections algorithm will converge to the

correct solution with noiseless data. If there is noise in the data, then a ‘gap’ opens

up at the correct solution (because noise will move the fixed point from one projec-

tion away from the other), but the alternating projections algorithm still converges

on the nearest point of closest approach. Since the alternating projections algorithm

converges to a valid solution even in the presence of noise, there is no need to use error

handling to ensure convergence. However, use of error handling (discussed later) may

give a solution that provides a better fit to the ideal noise-free image. If one chooses

more complicated non-convex projections (e.g. with many points of closest approach,

or ‘kinks’ in the lines/planes of fixed points), the alternating projections algorithm

will converge on the point of closest approach nearest to the initial starting point. In

these more complicated projection spaces, the alternating projections algorithm may

converge on the ‘wrong’ solution.
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5.2.4 Difference Map

Elser’s difference map [85] gives a general form to combine two projections which

converges on the intersection of the convex sub-spaces defined by the projections [89].

The particular form of the difference map that works best depends on the projections

chosen. We found the following fairly simple combination of the two projections (which

happens to be equivalent to Fienup’s hybrid input-output algorithm [88]) to be the most

useful for our MR image reconstruction:

D̂ = I + 2P̂1P̂2 − P̂1 − P̂2. (5.3)

The difference map operator can be rewritten in another form closer to what we actually

program (for better efficiency):

D̂ = I + P̂1(2P̂2 − I)− P̂2. (5.4)

The iterative mapping is given by,

|Sn+1〉 = D̂|Sn〉, (5.5)

and, after Niter iterations, the final output is given by |FNiter〉 = P̂2|SNiter〉. This final

application of the P̂2 projection is used to ensure the final output still satisfies the

measured points. Four iterations of the difference map is shown in figure 5.4 near a

‘gap’ between P̂1 and P̂2 fixed points.
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Figure 5.4: A depiction of the action of difference map algorithm without error
handling near a gap. The image space projection is P̂1 and the ~k space projection is
P̂2. The slope of the resulting divergence tells us something about the gap between
P̂1 and P̂2 introduced due to the projections being mutually inconsistent (often due to
noise or incorrect projections).

Divergence of the Difference Map

The difference map algorithm for iterative projections is designed to avoid points of

closest approach and only converge on shared fixed points (the correct solution). We

can thus be confident that the converged solution is the desired solution, even when

more complicated, non-convex projection spaces are used to reconstruct the MR im-

ages. However, since the difference map algorithm avoids gaps, the requirements for

convergence are more stringent than the alternating projections algorithm. Here we

discuss the cause of divergence for the difference map and how to ensure convergence.

If the projections are mutually inconsistent, this opens a ‘gap’ between the sub-

spaces. The difference map was designed to ‘run away’ from gaps between the sub-

spaces in order to find a point of intersection [91]. Thus, even in the absence of noise, a

mistake in the definition of either P̂1 or P̂2 will show up as divergence of |Sn(~k)〉 while

using the difference map. Similarly, the presence of noise in the data opens up a gap
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between the two projection sub-spaces, since P̂1 and P̂2 projections that ignore noise

are no longer consistent with each other.

In the limit of low, but non-zero, noise, the difference map seems to find the smallest

gap ∆ between the two projection sub-spaces, and then runs away in a perpendicular

direction (as shown in figure 5.4). In the low-noise limit, the run away in |Sn(~k)〉

doesn’t seem to present a problem, apparently because the final P̂2 projection used

to obtain |F n(~k)〉 brings us right back to the edge of the gap. However, in the large

noise limit (e.g. our MRI of solids data), ignoring the noise produces noticeably worse

results. Instead, we try to avoid the run away altogether by modifying P̂1, P̂2, or both

to handle noise, as is explained below. Conceptually, this fills in the gap to provide a

region of intersection between the two projection spaces.

5.2.5 What are the differences between the two algorithms?

There are crucial differences between the alternating projections and difference map

algorithms which may determine which algorithm is best for the desired reconstruction.

Alternating projections will converge to the nearest local minimum of the distance

function between the two projection spaces (i.e. the nearest point of closest approach).

As a result, if the distance function between the two projection spaces has multiple

points of closest approach along with the desired fixed point shared by both projections,

alternating projections may converge to the wrong answer (the nearest point of closest

approach). The difference map, on the other hand, was originally designed by Elser

to avoid these local ‘traps’. The difference map thus runs away from places of close

approach but converges for intersecting points. Of course, in the presence of noise, a

gap opens at the point of intersection, so error thresholds are needed to ’inflate’ the size

of the projection spaces to give a region of overlap, otherwise the difference map will

diverge. Since alternating projections already converges to the nearest point of closest
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approach, the opening of gaps due to noise does not affect its convergence properties.

It is worth pointing out that Elser gets rid of the effects of divergence of the difference

map by applying a final projection before outputting the final reconstructed image,

this brings back the diverging image to the nearest fixed point along that particular

projection. As mentioned above, in our algorithm we do one final P̂2 projection before

outputting the final reconstructed image. This tends to give reasonable answers in the

low-noise limit without the use of error handling, but in the large-noise limit error-

handling is needed for better results.

We know the projections we use for reconstructing our MR data result in convex

fixed point spaces, resulting in only a single region of closest approach. Thus, for

our case, both alternating projections and difference map should converge to the same

point (without noise) and the same overlap region (with noise and adequate error

thresholds). However, one good reason to use the difference map is the fact that it

does diverge when the two projections are inconsistent. This actually allows us to

discover if our projections are accurate and to determine good values to use for error

thresholds (namely, if it converges, it is close to being a good value). This also gives

us a better sense of how accurate our reconstruction is.

5.2.6 Metrics to Monitor Convergence

For large enough n (number of iterations), additional iterations of the map no longer

modify the output, so any measure related to the output |F n〉 will approach a constant

as the algorithm converges. However, some measures give more useful insight into how

well the output image matches the target image. Here we discuss some convergence

criterion that give a helpful measure of how good the output is compared to the target

output.

In the case that one has a densely-sampled data set with which to compare - as
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we had when we were exploring the convergence properties of our algorithm - one can

consider looking at the the difference between the output image of the algorithm at

each nth iteration, |F̃ n(~r)〉 and the target image resulting from the properly-phased

densely-sampled data set, |T̃ (~r)〉. This difference can be calculated using the Euclidean

(or l2 norm) in the image domain,

l2(|T̃ n(~r)〉 − |F̃ n(~r)〉) =

√√√√NFOV∑
j=1

∣∣∣T̃ (~rj)− F̃ n(~rj)
∣∣∣2. (5.6)

Often times, we limit this calculation to be only over the N± points inside the positive

and negative support regions of our image domain mask. Our algorithm converges once

the l2 norm remains constant over several iterations. Ideally, the l2 norm becomes zero

once the algorithm has converged on the exact solution. Of course, in the case of noisy

data, convergence to zero is nearly impossible, but the reconstructed image with the

smallest l2 norm is determined to be the best match to the target dense image. See

figure 5.5D for a plot of this l2 norm versus iteration number n for reconstruction of

2D NMR data looking at a LuxU sample with various error-handling thresholds. We

will see this 2D NMR data set in more detail in later sections. This data is similar to

MRI data, but instead of acquiring ~k-space data, one acquires time-domain data and

the image space is now frequency space.

As another measure of output quality, we take |T̃ (~r)〉 as a target vector, and then

calculate how ‘parallel’ and ‘perpendicular’ |F̃ n(~r)〉 is to that target. Specifically, the

‘parallel’ metric is given by,

F̃‖T̃ (n) =
〈T̃ (~r)|F̃ n(~r)〉
〈T̃ (~r)|T̃ (~r)〉

(5.7)
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which should approach one, and the ‘perpendicular’ metric is given by,

F̃⊥T̃ (n) =

√
〈F̃ n(~r)|F̃ n(~r)〉
〈T̃ (~r)|T̃ (~r)〉

−
(
F̃ n
‖T̃

)2

(5.8)

which should approach zero, as |F n(~r)〉 → |T (~r)〉. For both metrics we often do the

inner product only over the N± points inside the positive and negative support regions

of our image domain mask (so as not to be dominated by large artifacts). See figure5.5C

for a plot of F̃‖T̃ (n) and F̃⊥T̃ (n) versus iteration number n for the LuxU sample with

various error-handling thresholds.

In actual use, one would presumably not have access to the dense image. In that

case, other metrics can be used to determine convergence of the algorithm. One can use

the l1 norm of the reconstructed image, |F̃ n(~r)〉, after each iteration, which is defined

as,

l1|F̃ n(~r)〉 =

NFOV∑
j=1

∣∣∣F̃ n(~rj)
∣∣∣ (5.9)

or one can look at the entropy H of the image as defined in the MaxEnt algorithm [84].

The SIFT algorithm [96] determines the convergence by looking at the signal-to-noise

ratio along particular columns of the reconstructed multidimensional NMR data. Here

‘noise’ is defined loosely to include the aliasing artifacts due to undersampling.

We also make use of examining the Euclidean (l2) distance in ~k space between the

measured values and the values at those points in the current iterations:

R(n) =

√∑
j∈Nk

∣∣∣Sn(~kj)− S0(~kj)
∣∣∣2 (5.10)

where Nk is the set of sampled ~k-space points (Nk ≤ NFOV).

It is important to note that the difference map algorithm does not try to optimize
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Figure 5.5: Using 2D NMR data of a LuxU sample, we compare reconstructed spectra
and convergence metrics for three cases of noise-handling: (i) fnoise = 45000, Rhyp = 0,
(ii) fnoise = 0, Rhyp = 29185, and (iii) fnoise = 0, Rhyp = 0 (i.e., no noise-handling).
Here fnoise is equivalent to the ’image error threshold’ discussed in the error-handling
section. For each case, F̃ 15(f2) (blue) is plotted on top of the target T̃ (f2) (red),
and the positive (+2 × 105), negative (−2 × 105), and artifact (+4 × 105) support
regions are indicated (black). The vertical offset for each case is (i) 0, (ii) 1 × 106,
and (iii) 2 × 106. Note that inside the positive and negative supports, there is very
good agreement between T̃ (f2) and F̃ 15(f2) for cases (i-iii). With additional samples,
the agreement within the artifact support region improves (not shown). The biggest
difference is outside the supports, due to the details of the noise-handling cases. (B-E )
Filled squares are case (i), down-pointing triangles are case (ii), up-pointing triangles
are case (iii). (B) Examples of R(n) (iii) running away linearly with iteration number
due to large gap ∆, (i) rising very slowly with a greatly reduced ∆, and (ii) falling, with
no gap, so the iterations terminate (at n = 13). (C ) Plot of F̃‖T̃ (n) (blue) and F̃⊥T̃ (n)
(green) versus n, for each case. (D) Plot of l2(n) distance between the output and

target, as described in Metrics to monitor convergence of |F̃ n(~f )〉, for each case. (E )
Plot of l1(n) norm of the output (blue) versus n for each case. The l1(n) norm of the

target |T̃ (~f )〉 is also shown (red). Plotting H(n)/α for each case (green), shows the
close connection between the l1(n) norm and the entropy H(n) (used in the MaxEnt
algorithm [84]). The value α = −590 was picked to make l1(n) = H(n)/α for the
target (red).
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any of these metrics, as many sparse reconstructive methods do, yet the behavior of

these metrics can be illuminating. For example, figure 5.5 shows satisfactory outputs

of the difference map do not necessarily minimize the l1 norm (unlike l1 minimization

reconstruction techniques [76]) or maximize the entropy (unlike the MaxEnt algorithm

[84]), but the l1 norm does decrease and the entropy increases. The solution which

minimizes the l1 norm and maximizes the entropy is the solution which introduces no

more signal to the image than is absolutely necessary to satisfy the measured data.

This solution should help decrease aliasing artifacts due to undersampling, but could

also possibly miss important features in the image not captured by the particular points

sampled in ~k space. The difference map algorithm converges on a solution that satisfies

the known constraints on the image without making any further assumptions about

what the solution should look like.

5.2.7 Choosing Error Thresholds

One can imagine including error handling in the ~k-space domain, the image domain, or

both. Correct error thresholds are often crucial to ensure convergence of the difference

map algorithm for very noisy data sets (like our MRI data). Although alternating

projections will always converge, the resulting fit can be greatly enhanced by including

correct error thresholds as well into the projections. There is no good way (we have

found yet) that allows you to calculate the best values for error thresholds to use for

a particular data set that will guarantee you the best fit (i.e. reconstructed values for

each point are as close as possible to actual values in the presence of no noise). Here

we will address best practices of estimating good values to use for error thresholds to

achieve convergence for the difference map, and then these values can be tweaked a bit

to find the best fit for either difference map or alternating projection algorithms. One

such method is outlined below:
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1. For a given sparsely sampled ~k-space data set, determine a conservative estimate

for the noise of a point sampled once. Use this estimate as the individual sphere

radius (defined below) for error handling in ~k space.

2. Take the FFT of the sparsely sampled ~k-space data to give the image before

difference map reconstruction and find the average value of the noise (e.g. ampli-

tude of signal outside the positive, negative, and artifact support regions). Use

this value for the error threshold for error handling in image space.

3. The error thresholds found by the methods above should ensure convergence of

the difference map algorithm within a reasonable number of iterations (often less

than 20 iterations are needed). If you have issues getting the difference map to

converge, try increasing either error threshold slightly. If the difference map still

does not converge, check your image mask to make sure you are not missing any

possible signal or artifact regions.

4. Once you have convergence, you can lower both error thresholds until the de-

sired convergence criterion is minimized or maximized and the algorithm does

not diverge. In practice, we have found that greatly lowering the ~k-space error

threshold often has more benefits than doing the same for the image space error

threshold.

Another way to determine if the error thresholds you have chosen seem reasonable

is to find the‘gap’ distance between the fixed points of each projection at the desired

fixed point. Note that this fixed point would be the same for both projections without

the presence of noise. This gap size (∆) can be found by running the difference map

with no error handling (both thresholds equal to zero) and calculating R(n), as defined

above. The plot of R(n) versus iteration number should become linear as the algorithm

approaches the gap (see schematic in figure 5.4 and linear divergence in figure 5.5A).
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The slope of the resulting line that sets in as the iteration number increases gives

the size of the gap due to the presence of noise in the data. One can also use this

method to find the size of the gap with alternating projections. When alternating

projections converges (without error handling), R(n) will hop between two values, and

the difference between these two values gives the gap size (i.e. the difference in applying

one projection versus the other). Since this gap size needs to be accounted for using

error handling, the effective hypersphere radius (calculated below) and/or the image-

space error threshold must be at least the size of the gap (∆) for convergence of the

difference map.

Below are more specific calculations pertaining to the use of ~k-space and image-

space error handling that suggest best practices in order to arrive at good fits with the

difference map algorithm.

5.2.8 k Space Error Handling

Due to the presence of noise, we know the actual complex value of a given ~k-space

point (in the presence of no noise) should be within a sphere centered around the noisy

measured value at that point. We shall call the radius of this sphere the ‘individual

sphere radius’. If there is no noise in the measured data, the correct individual sphere

radius to use would be zero. One might then assume that individual sphere radius

should just be equal to the absolute noise level of that particular point. Interestingly,

we have found that the best value of individual sphere radius to use depends on the

number of points measured in the sparse data set as well. This suggests that individual

sphere radius is not just the noise level of a sampled point, but may also depend on

the reconstructed image noise (which is dependent on the number of ~k-space points

sampled, as shown later). Our reconstruction technique goes back and forth between

the ~k-space and image domains, so any changes in one domain affects the other in a
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rather complicated fashion dependent on the ~k-space points sampled as well as the

image domain mask. That being said, the individual sphere radius is closely connected

to the absolute noise for each measured point (and thinking about it as such can be

very convenient), so knowing something about the noise in the data set can help us

determine good values for the individual sphere radius.

Error handling in ~k space is done by inputting a value for the individual sphere

radius for the given sparsely-sampled data set. This value will quantify the distance

we will allow our reconstructed data to diverge away from the measured values. Below

we discuss two ways of error handling in ~k space with pros and cons for each approach.

Using Individual Spheres for Error Handling

In this error handling approach, the basic idea is to relax the P̂2 projection that re-

sets each measured point to its measured value. Instead we are happy to leave the

point alone whenever the point lies within a sphere, centered on each measured value.

For each ~k-space projection (P̂2) we find the difference between current reconstructed

complex values and the measured complex values for each sampled point. We then

compare this difference to the individual sphere radius taking into account the number

of times each point has been measured. The individual sphere radius is defined in a

unique way taking into account that some points may be sampled more times than

others, thereby reducing the absolute noise for those points by a factor of
√
mj, where

mj is the number of times the jth point has been measured. The individual sphere

radius then is given by rind/
√
mj, where rind is the sphere radius of a single complex

point sampled once. Many datasets have uniform sampling, so mj is the same con-

stant for all sampled points. We introduced this factor for our MRI data because some

points are measured many more times compared to others, depending on the ~k-space

sampling method use.
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A simple outline of error handling in the ~k-space P̂2 projection using individual

spheres is given below. Here S0(~kj) is the complex measured value, Sn(~kj) is the

complex value for each jth sampled point in the nth iteration of the reconstruction,

and |Sn(2)(~k)〉 = P̂2|Sn(~k)〉.

For each of the Nk sampled points in ~k space,

1. Find δ(~kj) =
∣∣∣S0(~kj)− Sn(~kj)

∣∣∣.
2. If δ(~kj) > (rind/

√
mj) then

Sn(2)(~kj) = S0(~kj) +

(
Sn(~kj)− S0(~kj)

δ(~kj)

)(
rind√
mj

)
(5.11)

3. If δ(~kj) < (rind/
√
mj) then Sn(2)(~kj) = Sn(~kj).

Since all points must satisfy the criterion that δ(~kj) < (rind/
√
mj) for this algo-

rithm to converge (i.e., none of the ~k-space points have changed from one iteration to

the next), divergence can happen simply by having at least one point never satisfy this

criterion (e.g. points that are far away from the average due to statistical fluctuations

in the data). For this reason, to ensure convergence one must choose rind ≥
√
mmaxrmax

where rmax is the maximum individual sphere radius for the data set and mmax is the

number of times the point with the maximum individual sphere radius has been sam-

pled. Finding a good value to satisfy this convergence criterion must be done through

estimation, trial, and error, since we do not know exactly what the actual measured

values should be without the presence of noise, and we also do not know exactly how

the reconstruction itself effects the sphere radius of each point. However, if there is

convergence using individual spheres error handling, one then has a strong knowledge

about the final reconstruction’s accuracy on a point-by-point basis. Similarly, if one

could pinpoint the points that are diverging, one can then change rind to rj which can
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be different for each point (e.g. rj larger for diverging points and smaller for others).

This change should help the individual spheres error handling method to achieve con-

vergence, as well as provide a more accurate fit. However, if one wants convergence

without so much sensitivity to the point-by-point noise, the next method of error han-

dling discussed below may be more enticing.

Using Hypersphere for Error Handling

One can also do ~k-space error handling using the ‘hypersphere’ which involves using the

radius of the complex hypersphere made by adding together all the individual spheres

used above. Essentially, the hypersphere radius is given by the square-root of the sum

of the squares of the individual sphere radii. In the case of unevenly sampled data (and

allowing for the absolute noise for each point to be different) the hypersphere radius is

then given by:

Rhyp =

√√√√ Nk∑
j=0

(
rj√
mj

)2

, (5.12)

where Nk is the number of sampled points in ~k space and rj is the noise radius of the

jth complex point sampled only once. This can be rewritten as:

Rhyp =
√
Nk(r2)avg where (r2)avg =

1

Nk

Nk∑
j=0

(
rj√
mj

)2

. (5.13)

A simple outline of error handling in ~k space using the hypersphere is given below.

1. Calculate

R(n) =

√∑
j∈Nk

∣∣∣Sn(~kj)− S0(~kj)
∣∣∣2 (5.14)
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2. If R(n) > Rhyp then

Sn(2)(~kj) = S0(~kj) +

(
Sn(~kj)− S0(~kj)

R(n)

)
Rhyp. (5.15)

3. If R(n) < Rhyp then |Sn(2)(~k)〉 = |Sn(~k)〉 (i.e. projection does not do anything

and has converged on a solution).

Using the hypersphere radius for ~k-space error handling allows one to have a smaller

individual sphere radius for convergence compared to using individual spheres for error

handling in ~k space. Mathematically, the equivalent rind required for convergence of the

hypersphere case (if all points are evenly sampled m number of times) would be rind =√
m(r2)avg, whereas for convergence of the individual sphere case, rind ≥

√
mrmax. This

makes sense because the convergence criterion here is much more flexible than in the

case of individual spheres: you just need R(n) to be smaller than Rhyp. This condition

can be satisfied when the individual sphere radius is too small for some points (making

the individual sphere error handling fail to converge), as long as it is also too large for

other points to compensate.

Although using hypersphere handling allows you to converge on a solution for a

smaller value of the individual sphere radius, this does not ensure that the hypersphere

reconstruction will be better than the individual sphere reconstruction. If all the

constraints set for the individual sphere radius are true (i.e. you are fairly certain

of the absolute noise level for each point and there are not large deviations from this

value), you can get a more accurate fit using individual sphere error handling. However,

if you cannot make such assertions about the noise in your data, the hypersphere error

handling method gives you more flexibility for convergence.
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A Slight Tangent on Ideal Sampling

Presumably, if one can use a smaller hypersphere radius for the same number of sampled

points, Nk, and still converge, the resulting reconstruction should be more accurate

than that found using a larger hypersphere radius. If so, then it might be interesting to

choose mj to minimize the hypersphere radius needed in order to achieve convergence.

For simplicity, let’s assume rj = r for all sampled points, which is a good approximation

if you expect all your sampled ~k-space points to have the same absolute noise error if

only sampled once. What values should we pick for mj to get the minimal size of Rhyp

if we want to take a total of M =
∑Nk

j=0mj measurements for the desired imaging time?

The constraint on mj is a strong one that hints at the correct answer: that mj should

be the same for every point, namely a uniform sampling where mj = M/Nk = m.

One can see this makes sense when considering the common desire of minimizing the

total effective noise determined by taking the root mean square of the individual noise

values. The one point that has the highest noise will dominate the ‘mean square’, so

one desires to have all the noise values be the same in size and as small as possible.

The most sensible solution then is to evenly distribute the sampling (mj = m = M/N)

so that each term in the sum contributes the same amount. This reasoning also applies

to the more general case when rj can be different for each point, now we just want

each term in the sum of r2
j/mj to contribute the same amount. This would be given

by choosing mj to be directly proportional to r2
j .

5.2.9 Image Space Error Handling

Noise in the measured ~k-space data also introduces noise in the image domain. The

resulting image noise depends only on the Nk points sampled in ~k space because the

unsampled points do not contribute noise (but do not contribute valuable signal either!)
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As a result, the image noise should be smaller for a sparsely sampled data set (with

total of Nk measured points) than the densely sampled data set (with total number of

measured points NFOV) by a factor of
√
Nk/NFOV.

To handle the noise in the image-domain P̂1 projection, we use an image error

threshold that determines the maximum allowed magnitude for complex points in the

image outside the image mask as well as points inside the mask region that do not

obey the criteria of the mask (i.e. real part of image data is positive for positive

regions and negative for negative regions). Points inside the artifact region are left

alone, since artifacts result from signal in the measured data and not simply noise.

For many MR data sets, image noise can be constrained even further because the data

is processed to give a purely real image (i.e. Hermitian symmetry has been enforced

in the ~k-space domain, and we have multipled the image by the appropriate phase

factor). One can then zero the all imaginary parts in the image as part of the image

domain P̂1 projection. We will discuss here the more general case where we can expect

noise in both imaginary and real parts of the image. The image after enforcing the P̂1

projection will be represented by |Sn(1)(~r)〉 = P̂1|Sn(~r)〉.

For each jth point in the properly-phased, image-domain data,

1. Determine if the point is in an artifact region, positive support region, negative

support region, or outside the image mask.

2. If point is located in an artifact region, then S̃n(1)(~rj) = S̃n(~rj).

3. If (Re (S̃n(~rj)) > 0 and this point is located in positive mask region)

or (Re (S̃n(~rj)) < 0 and this point is located in negative mask region)

then

S̃n(1)(~rj) = Re (S̃n(~rj)). (5.16)
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4. If S̃n(~rj) does not satisfy any of the above conditions, then

(a) If
∣∣∣S̃n(~rj)

∣∣∣ > image error threshold then

S̃n(1)(~rj) = S̃n(~rj)

 image error threshold∣∣∣S̃n(~rj)
∣∣∣

 . (5.17)

(b) If
∣∣∣S̃n(~rj)

∣∣∣ < image error threshold then S̃n(1)(~rj) = S̃n(~rj).

The gap between the fixed points of the two projections (which, without noise,

would be the same fixed point) can be overcome by either introducing error thresholds

in the ~k-space domain, the image domain, or both. We have found that if one increases

one error threshold in one domain, they can then decrease the error threshold in the

other domain to give similar results. If one uses an image error threshold smaller than

the actual noise level, noise in the image can be reduced, but the boundary of the

image mask will also become more apparent. Since the actual image does not have

such an arbitrary boundary, lowering the image error threshold too low may cause the

resulting fit to be not as accurate.

We have found that including both error thresholds can provide slightly better fits

than just dealing with error in a single domain. We have also found that having a

larger error threshold in image space compared to the effective hypersphere radius in ~k

space is more conducive to convergence than vice-versa. This may make sense because

error handling in image space impacts ~k space more so than error handling in ~k space

impacts the image. This is because the projection in image space alters more points

in the image space (at minimum, all the points outside the signal and artifact regions)

than the Nk points in ~k space that are altered for the ~k space projection. Thus, setting

a slightly wrong constraint (i.e. too small an error threshold) in image space will have

more of an impact that having a slightly wrong error constraint in ~k space.
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5.3 Image Reconstruction Results

While refining the reconstruction algorithms above, many tests were done on simulated

1D, 2D, and 3D data sets, with or without noise. Below are results using the difference

map algorithm on real, noisy MRI of solids data and multi-dimensional NMR data.

5.3.1 Reconstruction Results on Sparse MRI Data

To test our reconstruction algorithms on our MRI of solids data, we used the dense

image data taken of the wet pork rib sample shown in figure 4.6. We then only

used a certain number of Cartesian trajectories from this data to test different ~k-

space sparse sampling strategies. In order to choose the particular trajectories to

sample for sparse imaging, we wanted to ensure that each of the three different loop

patterns: {Z, Y,X}, {Y,X,Z} and {X,Z, Y } where used equally amongst the sparse

trajectories. Figure 5.6(left) shows 1584 different ways of sampling Octant I using

these three different loop patterns. We then chose particular trajectories to use for

sparse sampling of the data and tested to see which sampling strategies best matched

the dense image after reconstruction.

The first strategy we tried was to randomly choose trajectories from the 1584 dif-

ferent ways to sample a single octant. This strategy was used in acquiring the sparse

data set of the dry bovine sample shown in figure 5.2. Randomly choosing trajectories

(using different random seeds), however, can lead to big gaps in the acquired data,

which our reconstruction algorithm may find hard to fill because there are no nearby

measured points. To limit any gaps, we tried a strategy to mimic uniform under-

sampling of ~k space, but added in some random ‘jitter’ to still enjoy the benefits of

non-uniform sampling (i.e. incoherent artifacts). For each octant, the desired number

of rows, Ntraj, were uniformly distributed among the Ndense = 1584 trajectories shown
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in figure 5.6(left) with uniform spacing given by Ntraj/Ndense + 1. To add jitter, each

row was randomly placed within ±uniform spacing/2 (and we ensured no rows were

repeated). This ‘quasi-uniform + jitter’ sampling strategy for choosing trajectories is

equivalent to the QUEST strategy used in choosing t1 rows in multidimensional NMR

data sets, which will be explained in more detail in the multidimensional NMR section.

In the MRI case, we are choosing particular 3D trajectories, so the overall coverage

of ~k space will be different than the sampling resulting from using QUEST to choose

particular rows in multidimensional NMR data sets. Figure 5.6(middle) shows the 45

of the 1584 trajectories chosen to sample octant I, using this sparse sampling strategy.

The sparse trajectories chosen for all eight octants is shown in figure 5.6(left). We

also learned from our experiments that more sampling was needed along a dimension

when the image support region was larger in that dimension (which matches what one

would predict using information theory). Since our pork rib sample was about twice as

long in the x direction compared to the y and z directions, a third sampling strategy,

‘weighted quasi-uniform + jitter’, involved weighting the number of trajectories taken

from the {X,Z, Y } loop pattern by a factor of two compared to the {Z, Y,X} and

{Y,X,Z} loop patterns.

We can summarize the three different sampling strategies by: (1) randomly choos-

ing trajectories with different random seeds, (2) taking trajectories in a quasi-uniform

way to avoid large gaps, but then adding random jitter to increase incoherence (‘quasi-

uniform + jitter’), and (3) using the same quasi-uniform strategy while purposely

taking more points along the x-direction where the sample is widest (‘weighted quasi-

uniform + jitter’. For a given image mask, the same total number of ~k-space trajecto-

ries, and the same error thresholds: (3) gave a slightly better fit than (2), which gave

a better fit than (1). However, the variation among the three sampling strategies was
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Figure 5.6: (Left) 2D image showing the different trajectories used to sample octant
1 using triple-coverage (so all directions sampled evenly). Steps in the x direction are
colored red, y direction are colored green, and z direction are colored purple. Only 1/3
of the Ndense = 1584 trajectories shown would be sufficient to densely sample Octant 1.
(Middle) The Ntraj = 45 trajectories chosen to sample Octant 1 using ’quasi-uniform
+ jitter’ sampling. (Right) The full set of 360 sampled trajectories in 3D k space using
’quasi-uniform + jitter’ sampling.
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minimal and about the same as the variation one would get simply from using different

random seeds for randomly choosing trajectories or changing the error thresholds in

the reconstruction procedure (see figure 5.7).
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Figure 5.7: Plot of l2(|T̃ (r)〉−|F̃ 20(r)〉) versus number of 3D trajectories used to sample
the 3D MRI pork rib data set. Different strategies for choosing the trajectories were
tested, including random selection, quasi-uniform sampling with jitter, and weighted
quasi-uniform sampling with jitter.

These results suggest that optimizing other factors (such as error thresholds) may

be more helpful than having a more specialized sampling strategy for our 3D MRI data.

However, we have found some general ~k-space sampling strategies help maximize per-

formance of the reconstruction algorithm. These include (in order of importance): (1)

minimizing the number of large unsampled areas in the data, (2) minimizing coherence

in the sampling pattern, and (3) using knowledge of the sample dimensions to deter-

mine which directions (if any) should be sampled preferentially. These findings match

well with what others have found when examining different sampling options and their

corresponding artifacts [97].
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Figure 5.8: Reconstruction of sparsely-sampled solid-state MRI data. (A) Isosurface
rendering of a portion of the 3D (64× 64× 64) |T̃ (~r )〉 showing 31P density in pork rib
in PBS solution. The isosurface value is 33% of the MDS and shows the thick cortical
bone ring. The spatial resolution is (1.19mm)3 and Tacq was 35.2h. (B) A 2D slice of
|T̃ (~r )〉 with thickness of 0.595mm. The support region for this 2D slice (where signal
is expected to be positive) is outlined in blue. (C ) The same 2D slice from |S̃0(~r )〉
which provided a factor of 6 speed-up in imaging time. (Inset) Plot of S̃0(~r ) vs. T̃ (~r )
for voxels within the support region. The thick, dashed line y = x shows the poor-
quality fit prior to DM reconstruction. (D) The same 2D slice of |S̃20(~r )〉 after DM
reconstruction with P̂1 and P̂2 error handling. (Inset) Plot of S̃20(~r ) vs. T̃ (~r ) for
voxels within the support region. The thick, dashed line y = x shows the high-quality
fit after reconstruction, where most of the points are within the 10% noise level for the
measured data.

133



Figure 5.8 shows how well the difference map reconstruction process works on the

31P MRI pork rib data (figure 5.8A). The total image reconstruction time was between

two to three minutes for the various sampling strategies tried, which shows how fast

our algorithm works. Figure 5.8B shows this 2D slice for the densely sampled data,

|T̃ (~r)〉, with color thresholds chosen to highlight the thick cortical bone ring. The

blue line outlines the positive support region of the image mask. Figure 5.8C shows

the same 2D slice (with the same color thresholds) of the sparse image (|S̃0(~r)〉) when

we use quasi-uniform sampling plus jitter to choose 1/6 of all the possible ~k-space

trajectories. The image signal amplitude is decreased as a result of sampling fewer

~k-space points, and many features of the dense image are lost as a result. This poor

correlation between the dense and sparsely-sampled images can be seen in the plot

of the image point amplitudes shown in figure 5.8C (inset). We then use this image

as the input to our image reconstruction procedure (in this case, using the difference

map algorithm and error handling in both image and ~k-space). With appropriate error

thresholds, the reconstruction procedure converges and outputs the final reconstructed

3D image after 20 iterations, |F̃ 20(~r)〉, and 5.8D shows the corresponding 2D slice

of this reconstructed image. Plotting the signal amplitudes of the target dense image

versus our reconstructed image (figure 5.8D(inset)), we see a very good correspondence

within the large noise level of this data set (≈ 10%).

For figure 5.8, we used quasi-uniform sampling plus jitter to choose a total of 360

trajectories to sample all eight octants of ~k space (as shown in figure 5.6(right)). The

densely sampled data set (which only sampled the first four octants and used Hermitian

symmetry to fill the others) took 2112 trajectories and 35.2h to acquire. Using just

360 trajectories reduces the imaging time by another factor of six. With use of our

reconstruction algorithm, we have essentially gotten the same quality image as if we

had acquired for six times longer.
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Even more surprising, when we compare the reconstruction results of the pork rib

data using our bent Cartesian trajectories versus completely random sampling of ap-

proximately the same number of ~k-space points, we see nearly identical reconstruction

results (see figure 5.9B). Even though our 3D sampling strategy leads to more coherent

artifacts compared to completely random sampling (see figure 5.10), our reconstruction

algorithm will output equally accurate images. In fact, the sparse and reconstructed

image from our 3D Cartesian trajectories actually better match the dense image inside

our positive support region (as can be seen in figure 5.9). This is likely because we

sample more high-signal points near ~k = 0 than random sampling, so our signal starts

off higher in the corresponding sparse image (as can be seen in figure 5.10). Both

completely random sampling and our Cartesian trajectories give much better results

than quasi-uniform sampling without jitter, (see figure 5.9). Quasi-uniformly sampling

the data leads to very coherent artifacts showing up in the artifact regions inside our

image mask (see figure 5.10D), limiting the ability of the image space projection to

suppress these artifacts.

Along with expected differences due to noise, remaining discrepancies between the

reconstructed and dense images appear to be due to undersampling artifacts appearing

within our (rather large) artifact region in the image mask. These points are left

unchanged in the image projection, so the undersampling artifacts are never fully

suppressed. The signal from these undersampling artifacts are then not fully ‘pumped’

back into the points inside the positive support region of the image mask, leading to

slightly smaller signal values compared to the dense image. We see more discrepancy

in high-signal points because these points produce the highest-signal undersampling

artifacts (and so more signal is lost in these points due to their corresponding artifacts

not being completely suppressed). The ‘tighter’ we can make the image mask (and the
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Figure 5.9: (A) Plot of the sparse image point values versus the corresponding dense

image point values for different sampling strategies of 6000 points within the 3D ~k-
space octahedron. Only points within the positive support region of the image mask
were plotted. (B) Plot of the reconstructed image point values versus the corresponding
dense image point values for same sampling strategies and points shown in A. Points
along the dashed black x = y line perfectly match the dense image points. The blue
lines show the image error threshold used in these reconstructions, and the purple lines
show the 10% noise-level in the dense image.

smaller we can make the artifact regions), the smaller these discrepancies will become.

With these promising preliminary results, we are confident that in future work

this reconstruction process will help speed up MRI imaging dramatically, and poten-

tially be useful for all sorts of imaging modalities. We explore the usefulness of this

reconstruction algorithm for multi-dimensional NMR data below.

5.3.2 Reconstruction Results on 2D NMR Data

Iterative-projection approaches have been developed for fast acquisition of multidimen-

sional NMR data, most notably by Herzfeld and Matsuki who developed SIFT (Spec-

troscopy by Integration of Frequency and Time Domain Information) [96, 98, 99]. The

SIFT approach uses the alternating projections algorithm without any form of artifact

or error handling and weaker image-space projections than we have discussed above
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Figure 5.10: The same 2D slice from 3D images of the pork rib data resulting from
different sampling strategies. The same color scale was used for all four plots. (A) 2D

slice of dense image from sampling all points in ~k-space octahedron. (B) 2D slice of

sparse image from sampling ≈ 6000 points in ~k-space octahedron via 360 Cartesian
trajectories. (C ) 2D slice of sparse image from randomly sampling ≈ 6000 points in ~k

space. (D) 2D slice of sparse image from quasi-uniform sampling ≈ 6000 points in ~k
space.

(because it does not assume properly-phased data with purely absorptive, real spec-

tra). As a result, our algorithm is more likely to work better with noisier and sparser

data sets, although proper phasing of the NMR data is required in order to use our

stronger image/frequency-space projections. The use of the difference map algorithm

may also prove more useful when non-convex projections are used that may have multi-

ple fixed points. The difference map algorithm was designed to avoid gaps between the

projection spaces and only converge at a point of intersection, whereas the alternating

projections algorithm will always converge on the nearest point of closest approach.

Below we explain how we process the multidimensional NMR time-domain data to
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give a purely real frequency spectrum in order to make use of our strong P̂1 projection.

Note, to match the NMR data conventions, in this section we will refer to time and

frequency domains instead of ~k space and image domains, respectively. In the following

section, we discuss advantages of the ’QUasi-Even Sampling, plus jiTter’ (QUEST)

sampling schedule to sparsely sample 2D NMR, and in the final section, we show

results from reconstructing sparsely sampled 2D NMR of liquids and solids data.

Processing Properly-Phased Multidimensional NMR Data

We are able to use a stronger frequency domain projection (P̂1) compared to SIFT if the

time-domain data is properly phased to give a purely real (i.e. absorptive) signal in the

frequency domain. The ‘weaker’ P̂1 projection used by SIFT and others do not require

the frequency-domain signal to be purely real or absorptive, so proper phasing of the

time-domain data is not required. However, any hassle in properly phasing the NMR

data is vastly outweighed by the many advantages of using a stronger P̂1 projection.

Here we shall only discuss the 2D case, but these techniques can be easily extended to

higher dimensions. Instead of the conventional purely-absorptive data reconstruction

using the ‘States’ method [100] (which isn’t easily reversible), we were inspired by k-

space mapping in MRI to construct a |T (~t)〉 that filled all four quadrants of the time

domain with Hermetian symmetry about the origin, such that each component satisfies

T (~t) = T ∗(−~t). A 2D complex Fourier transform (followed by a phase correction) yields

a purely-real spectrum. The same idea is used by the pseudo-echo transformation in

2D NMR [29].

After adjusting the spectrometer phase, data acquired using a ‘States’-like 2D NMR
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experiment looks something like this:

Scos(t1 ≥ 0, t2 ≥ 0) =
∑
`

a` cos(Ω
(1)
` t1) exp(iΩ

(2)
` t2)

Ssin(t1 ≥ 0, t2 ≥ 0) =
∑
`

a` sin(Ω
(1)
` t1) exp(iΩ

(2)
` t2)

where ` is the index for an individual nuclear spin, and the signal we acquire is a sum

over all these spins. To map this data into the four time-domain quadrants, we will

first define:

A(t1, t2) = Re(Scos(|t1|, |t2|))

B(t1, t2) = Im(Scos(|t1|, |t2|))

C(t1, t2) = Re(Ssin(|t1|, |t2|))

D(t1, t2) = Im(Ssin(|t1|, |t2|))

and then the four quadrants of complex time-domain data are filled using

SI(t1 ≥ 0, t2 ≥ 0) = A−D + i(B + C),

SII(t1 ≥ 0, t2 ≤ 0) = A+D + i(−B + C),

SIII(t1 ≤ 0, t2 ≤ 0) = A−D + i(−B − C),

SIV(t1 ≤ 0, t2 ≥ 0) = A+D + i(B − C).

as shown in figure 5.11. In order to fill a uniformly-spaced grid across all four quadrants,

we require data acquisition to start at either ti = 0 or ti = δti
2

, in both dimensions

(i = 1, 2). Whenever States acquisition starts at ti = 0, adjacent quadrants ‘double-fill’

the ti = 0 axis, so those points need to be halved before loading the four quadrants
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Figure 5.11: This shows how the complex 2D time-domain data acquired in a ‘States’-
like experiment can be arranged into the four quadrants of the time domain, |T (~t)〉.
2D NMR experiments typically acquire two sets of the (t1 ≥ 0, t2 ≥ 0) first quadrant
data (one with sine amplitude modulation and one with cosine amplitude modulation)
and zero-fills up to the size of the four quadrants (shown in dashed lines).

into |T (~t)〉.

A 2D, complex, discrete Fourier transformation of |T (~t)〉 yields |T (~f)〉, which can

then be converted to a purely real spectrum |T̃ (~f)〉 = Ph(|T (~f)〉), where the phase

factor is obtained from the Fourier shift theorem (to account for the position of the

~t = 0 point in |T (~t)〉). For the 2D NMR case, the p1, p
th
2 component is given by:

T̃ (~f)p1,p2
= exp(−i(φp1 + φp2))T (~f)p1,p2

where

φpi =
2π(pi − Ni

2
)(Ni

2
− ci)

Ni

pi = (0, 1, 2, ..., Ni − 1), and ci = 0 or 1 when the first point of the ith dimension is

acquired at ti = 0 or δti
2

, respectively. All of these steps are reversible operations:

IFFT (Ph−1|T̃ (~f)〉) = |T (~t)〉, and we make use of this fact during our iterated maps
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approach.

Use of the QUEST Sampling Schedule

In many 2D NMR measurements, the experimenter waits a repetition time between

acquiring rows of data (along the t2 dimension), so we mimicked different speed up

factors in experimental acquisition time by choosing a different number of t1 rows

for sparsely sampling the data. We developed the ‘QUasi-Evenly Spaced, plus jiTter’

(QUEST) sampling schedule in order to pick particular t1 rows to include in |S0(~t)〉 =

P̂0|T (~t)〉 to simulate skipping particular experiments in 2D NMR acquisition. Instead

of biasing samples towards low or high t1 values, the QUEST undersampling pattern is

closer to uniform spacing, which appears to have some advantages (i.e. gaps between

unsampled points are minimized, which allows the iterated map algorithm to more

easily fill in these gaps). To make the undersampling artifacts less coherent, we add

a small amount of random jitter to determine the final row pattern. To be specific, if

a dense 2D data set has Ndense rows with t1 ≥ 0, we could label them with a counter

jdense = (0, 1, 2, ..., Ndense − 1). The subset of those rows that are sampled by QUEST

are described by the formula:

jQUEST =Round

(
pNdense

Nt1

)
+Round

(
Enoise

(
Trunc

(
Ndense

2Nt1

)))

Here Nt1 is the number of positive t1 rows used by QUEST, p = (0, 1, ..., Nt1 − 1),

Trunc(x) keeps only the integer part of x, Enoise(y) gives a random number evenly

distributed within ±y, and Round(z) rounds z to the nearest integer. The set of jQUEST

values is generated as we increase p from 0. If the jQUEST formula yields a row number

that has already been used, we add one to that value, ensuring that no row numbers
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are repeated. For the case of Figure 1, we have Ndense = 128 and Nt1 = 65. Any values

of jdense that are not found in jQUEST are set to zero by P̂0, and the matching pattern

is used for t1 ≤ 0.

In order to approximate the aliasing due to QUEST sampling, we treat the simpler

case of uniform undersampling of t1 rows. Specifically, if we consider the aliases above

and below the center bandwidth, every support mask feature has multiple copies, at

frequencies:

f+M = f1 +Round

(
Nt1

Ndense

×M ×BW1

)
fc = f1

f−M = f1 −Round
(

Nt1

Ndense

×M ×BW1

)

where BW1 is the bandwidth for dense sampling (with Ndense rows), −BW1/2 ≤ f1 <

+BW1/2, and Nt1 ≤ Ndense is the number of sparsely-sampled t1 rows. In the figures

given below, only the M = 1 aliases were shown for clarity. As Nt1 drops below Ndense,

the copies fold over into the central bandwidth, causing aliasing.

For a given support mask, we can use this approximation to estimate the number

of t1 rows we need to take to avoid overlapping support mask regions that would limit

reconstruction efficacy. For example, in figure 5.12A we plot the Euclidean distance

between the reconstructed and dense spectra (l2[|F̃ n(~f)〉 − |T̃ (~f)〉]) for two different

P̂1 masks, plotted versus the number of positive t1 rows sampled (Nt1). As expected,

a looser mask (red curve) results in a larger difference between the reconstructed and

dense spectra (larger l2) than a tighter mask (blue curve), at each Nt1 . To understand

the striking peaks in figure 5.12A at Nt1 = 65 and 85, we pick a P̂1 mask and study the

aliasing that results from uniform undersampling (since this nicely approximates the
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Figure 5.12: Comparing performance of the difference map algorithm using two dif-
ferent P̂1 masks for the IGPS data (from Figure 4.2). (A) The l2 difference between
the reconstructed and dense spectra (inside the positive support) plotted versus the
number of positive t1 rows sampled (Nt1), where Nt1 ≤ 128, for both looser (> 0.14%
of MDS, red triangles) and tighter (> 0.70% of MDS, blue triangles) P̂1 masks. The
tighter mask (blue) was used in Figure 4.2. Both traces have a peak in l2 at Nt1 = 65,
but only the looser mask (red) has a peak at Nt1 = 85. (B) The aliasing of the looser
mask due to uniform sampling at Nt1 = 85. (C ) Zooming into the region outlined by
thnstruction quality and explaining the disappearance of the peak in l2 at Nt1 = 85 for
this mask in A (blue).

artifacts from QUEST). Figure 5.12B shows the aliasing of the loose mask expected for

Nt1 = 85. Zooming into the black dashed line region (in figure 5.12C ) shows that many

strong peaks push into the support region (highlighted in yellow) as they are aliased

from above (red) and below (blue). These aliasing artifacts will not be suppressed by

our P̂1 projection, resulting in a worse reconstruction (larger l2). However, when we do
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the same analysis with the tight mask (see figure 5.12D), we see that most aliased peaks

miss the support region so our P̂1 projection will accurately suppress these artifacts,

leading to a better reconstruction and the disappearance of the Nt1 = 85 peak for the

tighter mask (red) data in figure 5.12A. In this picture, if strong aliased peaks push

into the support of the central mask (as Nt1 is lowered), then reconstruction quality

suffers. The aliased masks are a convenient proxy for the aliased peaks, and they can be

used to quickly estimate the minimum Nt1 for excellent reconstruction using QUEST.

To do this, one can plot the overlap of the aliased masks with the central mask while

lowering Nt1 ; all overlaps close to zero will yield excellent reconstructions.

In some experiments, lower quality of the output may be acceptable in exchange for

having a shorter experiment acquisition time. When pushing into that regime, QUEST

can also help to identify which regions of the output spectrum will degrade first, due

to aliasing artifacts. To illustrate this feature of QUEST, we analyzed a liquid-state

2D NMR data set with a LuxU protein sample (taken by our collaborators in the Pat

Loria lab). We mimicked different speed up factors in experimental acquisition time

by using a different number of t1 rows: Nt1 = 65 (figure 5.13), Nt1 = 50 (figure 5.14),

Nt1 = 35 (figure 5.15), Nt1 = 20 (figure 5.16). The resulting undersampling artifacts

appear along the f1 direction in the sparse spectrum as expected (see panel B). The

sparse spectrum before reconstruction has a fairly poor fit with the dense spectrum, as

can be seen in the red points of panel C. The most obvious discrepancies are for points

that have nearly zero amplitude in the dense spectrum, but have non-zero amplitude in

the sparse spectrum. These are the undersampling artifacts in regions where we expect

there to be very little signal, so use of a support constraint is particularly helpful to

confine these points. The mask in the frequency domain we used for our difference

map reconstruction is shown in panel B. The resulting filled-in time-domain data after

15 iterations of our algorithm with frequency-domain (P̂1) noise-handling is shown in
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panel D. The resulting reconstructed spectrum is shown in panel E. The reconstructed

spectrum matches very nicely with the dense spectrum, as shown in both panels C

(blue points) and F. The contour levels range from 6% to 72% of the maximum signal,

so reconstruction is accurate over a very wide-range of signal amplitudes. Panel G

shows how the output vector becomes more ‘parallel’ and less ‘perpendicular’ to the

target vector when the algorithm works as desired. Lastly, panel H shows a plot in

the style of figure 5.12C, showing the central LuxU mask (dark yellow), the −1×BW1

mask (dark red) poking in from above, and the +1×BW1 mask (dark blue) poking in

from below.

Comparing figures 5.13-5.16, we can summarize how the algorithm seems to work,

and what happens as the input data is reduced. The red points in panel C show that

most large features start at only ≈ x% of their dense value, where x% is the sparse

sampling percentage; at the same time, pixels that should be zero in the dense signal

are non-zero, due to the artifacts of sparse sampling. As the algorithm iterates, the

artifacts are driven towards zero, while the true signals push up toward their dense

values. The total area under the signal is a conserved quantity, since we always include

the data point at ~t = 0. Panel H shows that artifacts (blue features) that survive to

the end of the algorithm are located in the portions of the frequency domain where

the aliased and central masks overlap. The consequence of artifact survival is a poorer

output quality, since it is also correlated with additional undershoot (red features) of

the true signal amplitude in panel H. For clarity, panel H only shows the location of

the M = 1 aliases at specific Nt1 values, but the formulas given earlier indicate when

M = 2 and M = 3 aliases will start to matter as well. For example, at Nt1 ≈ 33 the

M = 2 aliases will just start to poke into the central mask (similar to what is seen in
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figure 5.13H for M = 1). On the other hand, at Nt1 = (50/2) = 25 the M = 2 aliases

will just touch in the central mask (as seen in figure 5.14H for M = 1). Finally, at

Nt1 ≈ 22 the M = 3 aliases will just start to poke into the central mask (as seen in

figure 5.13H for M = 1). These ‘special’ numbers are consistent with the trends in

figures 5.13-5.16, with reasonably high quality fits from Nt1 = 65 down to Nt1 = 35,

and a noticeably lower quality fit for Nt1 = 20.

More Multidimensional NMR Reconstruction Results

Figure 5.17 shows our reconstruction method applied to another liquid-state 2D NMR

data set from the Pat Loria lab. Using an Isoleucine, Leucine, Valine (ILV) 13C-methyl

labeled sample of imidazole glycerol phosphate synthase (IGPS), we were able to very

accurately reconstruct the entire spectrum (figure 5.17B-C ) over a wide dynamic range,

starting with just 58.6% of the time-domain data. In this case, no noise-handling is

used for either P̂1 or P̂2. Note that the artifact domain (surrounded by blue in figure

5.17A) is much larger than that in figure 5.13B. In addition, this P̂1 mask has no

negative support regions, and the positive support regions (surrounded by black in

figure 5.17A) are the portions of the dense spectrum with ≥ 0.7% of the maximum

dense signal (MDS). Constructing such a tight mask would typically require the full

dense spectrum, which is not available in all situations. However, in a serial experiment

such as an NMR relaxation rate measurement, one dense data set (at maximum signal

amplitude, to optimize the mask) could be followed by sparsely-sampled (x%) data sets

acquired at various relaxation delays, requiring only ∼x% of the normal experimental

time, as was recently demonstrated using SIFT [99].

Figure 5.18 shows a very accurate reconstruction of a solid-state 2D NMR spectrum

from a NCGB1 sample, despite starting with just 34.3% of the time-domain data and
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no noise-handling. This is a very large (4096 × 4096 complex points) 2D data set,

with sparse spectral features (including artifacts of the magic angle spinning) that

span a wide range of amplitudes. For the most-part, the P̂1 positive support region is

a coarse set of blocks, as we used in figure 5.13. In a crucial refinement, a ‘keyhole’

was cut into a signal-free region of the mask, to make room for an aliased rotational

side-band (see figure 5.18A). Adding the tiny keyhole drove the minimum Nt1 from

1100 → 702 (53.7% → 34.3%), while maintaining excellent quality of reconstruction

over a wide dynamic range, as seen in figure 5.18B-F.

5.3.3 Further Comments

In the reconstructed images shown, we aimed for nearly ideal outputs |F̃ n〉 ≈ |T̃ 〉, since

results of that quality can be used for any application. In the case of 2D NMR, we

found that QUEST helped us to determine the minimum number of samples consis-

tent with that goal. At first glance, our sparse sampling percentages may not seem

that low, but in fact they appear to be quite close to the minimum necessary for a

constrained linear system. For example, the corresponding sparse sampling percent-

ages used in figures 5.13,5.17,5.18 are: (50.8%, 58.6%, 34.3%), which are similar to the

largest percentage of positive or negative support pixels along the f2 columns for each

mask: (55.1%, 44.5%, 32.6%). Since our current 2D NMR experiments use sparse sam-

pling in the single indirect dimension (by ‘skipping’ some t1 values), the required sparse

sampling percentages should drop quickly as this method is applied in 3D NMR, 4D

NMR, etc.

The reconstructed images |F̃ n〉 also have better signal-to-noise ratios than |T̃ 〉, since

fewer noisy samples are used at the input. The ability to sample at very long times,

without requiring the acquisition of all intermediate times, can be used to achieve
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higher spectral resolution in less acquisition time. The time savings offered by iterated

maps could be leveraged to allow practical acquisition of higher dimensional (5D and

6D) NMR experiments, which are currently not feasible in all but the most ideal

circumstances. Moreover, iterated maps offer another approach to further accelerate

ultrafast 2D NMR [101, 102].

The iterative maps approach has many characteristics that should be familiar to

magnetic resonance practitioners, such as its use of on-grid sampling, the FFT/IFFT,

and final outputs which look the same as dense data sets in both the time and frequency

domains. It complements existing methods to reconstruct spectra from sparsely-

sampled data, and should find further applications in NMR and MRI of solids. More

generally, any data acquisition and image modalities which make use of two reciprocal

spaces related by a transformation can use this technique to harness a priori knowledge

to fill in undersampled data. The speed, simplicity, and robustness to error makes this

an ideal technique for fast analysis of noisy experimental data.
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Figure 5.13: Reconstructing liquid-state 2D NMR data of the 15N-LuxU sample. (A)
Magnitude plot of 50.8% sparsely-sampled (t2, t1)-domain NMR data, |S0(~t)〉, (256
rows×4096 columns). Pink shows the t1 rows set to zero by P̂0. (B) Real part of

phase-corrected FFT of the sparsely-sampled data shown in A, |S̃0(~f)〉, which shows
the resulting aliasing artifacts along f2 columns. Red pixels are ≥ 6% of the maximum
dense signal (MDS) in |T̃ (~f)〉 (not shown). The P̂1 mask is shown, where blue surrounds
the artifact region, black surrounds the positive support regions, and green surrounds
the negative support regions. (C ) Plot of pixel values along the six columns marked by

red arrows in B and the blue arrows in E versus corresponding pixels from |T̃ (~f)〉. The
long dashed line y = (0.508)x shows the poor quality of the fit before reconstruction

(red open circles are F̃ 0(~f) vs. T̃ (~f)). The short dashed line y = x shows the excellent

agreement after reconstruction (blue open triangles are F̃ 15(~f) vs. T̃ (~f)), over the full
range of positive and negative pixel values. (D) The resulting time-domain data after
15 iterations of our difference map (DM) algorithm, ||F 15(~t)〉|, using a small value of P̂1

noise-handling (±0.3% of the MDS). (E ) Real part of phase corrected FFT, |F̃ 15(~f )〉,
of the DM reconstructed data shown in D. Red pixels are ≥ 6% of the MDS. (F )
A portion of a contour plot showing the close match between the real parts of the
dense spectrum (dashed) and the reconstructed spectrum (solid), using the same color

scale and contour values (6% → 72% of the MDS, in 6% steps) for both |T̃ (~f )〉 and

|F̃ 15(~f )〉. (G) The resulting parametric plot of F̃‖T̃ (n) vs. F̃⊥T̃ (n), from the n = 0
point (thin black arrow), to n = 15 (thick black arrow), shows the approach to the
target (red arrow). (H ) A plot similar to figure 5.12C. The black contours are at

n1% = 1%×MDS of |T̃ (~f )〉. The blue pixels are where |F̃ 15(~f )〉 − |T̃ (~f )〉 ≥ n1%,

and the red pixels are where |T̃ (~f )〉 − |F̃ 15(~f )〉 ≥ n1%.
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Figure 5.14: Same as figure 5.13, if we drop to Nt1 = 50 (note the increase in pink row
density in A). The long dashed line in C has slope 50/128. Still a high quality output.
H shows more blue pixels near the overlap of masks (top and bottom of yellow box),
the residual traces of sparse sampling artifacts. The red pixels are concentrated in the
black contours.

Figure 5.15: Same as figure 5.13, if we drop to Nt1 = 35. The long dashed line in C
has slope 35/128. This is approximately the lower end of the Nt1 range for high quality
outputs. In (H ), we see that the dark red and dark blue masks just touch, and so blue
pixels are scattered across the central mask. Red pixels fill more of the black contours.
This sparse sampling of the data requires only 27% of the normal acquisition time of
the densely-sampled data set.
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Figure 5.16: Same as figure 5.13, if we drop to Nt1 = 20, which is a lower quality
output. The long dashed line in (C ) has slope 20/128. Compared to figure 5.13, most
blue points in C fail to reach the short dashed line (with a slope of 1). Note also that
this is the first case where many blue points in C that should be zero to match the
dense image have instead grown larger than the red point values they had at the start
of the algorithm (look at points at zero on the horizontal axis, in figures 5.13C -5.16C ).
The ‘perpendicular’ component in G grows monotonically for n = 0 to n = 15. In D,
dark stripes are noticeable, along with residual aliasing within the mask in E. For this
Nt1 = 20, H shows that the dark red and dark blue masks overlap, and the ±2×BW1

masks (not shown) are poking into the central mask. As a result, more blue pixels
are scattered across the central mask. Red pixels fill even more of the black contours.
Still, C shows that the final output is better than |S̃0(~f )〉, and E -F shows that some
of the target features are recognizable, in just 16% of the normal acquisition time.
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Figure 5.17: Reconstructing liquid-state 2D NMR data of the IGPS sample. (A)

Real part of phase-corrected FFT |S̃0(~f)〉 of 58.6% sparsely-sampled (t2, t1)-domain
data, which shows the resulting aliasing artifacts along the f2 columns (256 rows×4096
columns). Red pixels are ≥ 6% of the MDS. The P̂1 mask is shown, where blue sur-
rounds the artifact region, and black surrounds the positive support regions (≥ 0.7%
of the MDS). (B) The reconstructed (f2, f1)-domain data after 15 iterations of our

difference map algorithm, |F̃ 15(~f)〉, without using any noise-handling. (B, Inset) Plot
of pixel values along the three columns marked by blue arrows in B versus correspond-
ing pixels from full dense spectrum. The short dashed line y = x shows the excel-
lent agreement after reconstruction (blue open triangles are F̃ 15(~f) vs. T̃ (~f)). (C ) A

contour plot of a region comparing the real parts of the full dense spectrum |T̃ (~f)〉
(black) to the reconstructed spectrum |F̃ 15(~f)〉 (colored), using identical contour values
(3%, 8%, 17%, 25%, 34%, 67% of the MDS) for both spectra.
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Figure 5.18: Reconstructing the 13C-13C 2D MAS correlation spectrum for the 13C/15N

enriched GB1 solid state sample. (A) Real part of phase-corrected FFT |S̃0(~f)〉 of
34.3% sparsely-sampled (t2, t1)-domain data, which shows the resulting aliasing arti-
facts along the f2 columns (4096 rows×4096 columns). Red pixels are ≥ 2.7% of the
MDS. The P̂1 mask is shown, with artifact regions surrounded by blue, negative sup-
port regions by green, and positive support regions surrounded by black. (B) The
reconstructed (f2, f1)-domain data after 15 iterations of our difference map algorithm,

|F̃ 15(~f)〉, without using any noise-handling. (C - F ) Zoom-in contour plots of vari-
ous regions comparing the full dense spectrum (dashed) to the reconstructed spectrum
(solid), using identical color scales and contour values (1%, 2%, 3%, 4%, 8% of the MDS)
for both spectra. C shows a high-signal region near the main diagonal; D shows a low-
signal region far from the main diagonal; E shows another low-signal region far from
the main diagonal; and F shows a low-signal region where there is a rotary resonance
(MAS rate ≈ 18.2 kHz). (F, Inset) Plot of pixel values along the two columns marked
by blue arrows in B versus corresponding pixels from the full dense spectrum. The
short dashed line y = x shows the high-quality fit over a wide dynamic range after
reconstruction (blue open triangles are F̃ 15(~f) vs. T̃ (~f)).
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Chapter 6

Future Work

As was shown in the previous chapters, we have certainly made great advances in doing

higher spatial resolution 31P MRI of solids, as well as explored ways to speed up the

imaging process considerably. In this chapter I will discuss where we can go from

here, particular with regards to enhancing resolution further using proton decoupling

methods and exploring future uses of our MRI of solids technique and sparse image

reconstruction algorithms.

6.1 Enhancing Resolution via Decoupling

Decoupling is a technique used to lessen the interactions between different nuclei (eg.

the interactions between hydrogen nuclei and phosphorus nuclei). Hydrogen, with the

largest naturally abundant magnetic moment, couples the most with other nuclei, so

most decoupling schemes involve hydrogen. We found that our line-narrowing sequence

in complicated materials - such as bone mineral and cell membranes - works about

1000-fold worse than in the pure silicon or buckyball samples originally examined. One

important contributing factor to this lower resolution is the fact that bone mineral and

cell membranes contain a lot of hydrogen which can interact with the phosphorus nuclei,
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and these heteronuclear spin interactions are not effected by our pulse sequence. One

way to get rid of the effects of these hydrogen-phosphorus interactions is to decouple

the spins by exciting both sets of nuclei. For example, we can do our regular line-

narrowing sequence on the phosphorus nuclei while constantly exciting the hydrogen

nuclei, so the interactions averaged over time go to zero. This form of decoupling

is often termed ‘continuous wave’ (cw) decoupling, and is the simplest decoupling

method at the expense of sample heating. Other decoupling pulse sequences have been

developed to make decoupling more effective and also reduce sample heating. We will

first try the easy to implement cw decoupling, but further work can certainly be done

exploring other more complicated, and potentially more effective, decoupling schemes.

6.1.1 Double Resonance Probe

In order to do decoupling, we first need a double resonance probe tuned to the two

desired Larmor frequencies (for 1H and 31P, in our case). One can imagine just having

two completely separate tuning circuits with two perpendicular sample coils around

the sample (to avoid current in one coil inducing a current in the other). However,

in this scheme only one coil has an optimal filling factor and the spatial distribution

of the two rf fields will be different [103]. Thus, it is often desirable to doubly-tune a

single coil. For our imaging case, a single coil is also preferable because then we could

theoretically take both hydrogen and phosphorus images of the sample in the same

exact location in the coil for direct comparison.

Overall Design

The different designs for a double resonance circuit share the common features of using

frequency traps and isolation components to keep the high and low frequency parts

of the circuit isolated from each other. When designing our own solid state probe for
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hydrogen and phosphorus decoupling, we were ultimately deciding between three very

similar probe designs [104, 105, 106, 107]. We decided to base our design off of one

given by Tang, et al. [107], see figure 6.1, because it is supposed to be an improvement

upon the conventional design and the article explained well how tuning the final circuit

was done. What just remained was to adapt this design for our conditions (namely,

switch from the original C13 nucleus to P 31, as well as lower the external magnetic

field). See appendix D for an analysis of the main components of Tang et al.’s circuit

design as well as theoretical estimates for the elements needed in our own probe.

1H 31P 
CF 

CHT 
CT 

CLT 

LHM 

LS 

LLM 

Figure 6.1: The layout of our proposed MRI of solids double-resonance circuit, based
on the design of Tang, et al.

Final Version of Double Resonance Probe

Putting the double resonance probe together, we quickly encountered some problems

not anticipated by the theory or discussed in Tang’s paper. First, with such a large

sample coil, the stray capacitance of the circuit (and the sample coil itself) was too

high to get the high frequency circuit to tune. For this reason, we had to reduce the

sample coil inductance (going from 8 turns down to 5). Also, the overall length of the

wire making up the sample coil was still not a small fraction of the short wavelength

at the hydrogen frequency. Our probe-designer collaborator, Pete Brown, suggested

keeping this length to less than 1/16 of the wavelength so that the voltage will be
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fairly homogeneous over the entire sample coil and reducing any ‘dark spots’ where

the voltage along the coil is low. To do this, we needed to break up the sample coil

with a capacitor (CST ). With these additions, we were able to have a good tuning

range around our desired frequency. Matching was done mostly by leaving LHM alone

and having CF be a variable capacitor (which also adjusted the tuning). For the low

frequency circuit, tuning was now limited due to the presence of CST , so we added

an inductor in parallel for the low frequency. To match the low frequency, LHM was

lowered. We also added, as suggested by Tang, et al., another inductor to ground at

the proton input for further isolation of the low frequency. To increase sensitivity in

our sample coil, the high frequency trap inductance, LT , was lowered from the original

theoretical prediction, requiring CT to be raised. Once the whole circuit looked well

tuned and matched for both frequencies, CF was fixed at the best value. Tuning with

the tuning capacitors for both frequencies should work fairly well, but different loads

may require matching adjustments which would have to be done manually by changing

LHM or CF for the high frequency and LLM for the low frequency. Figure 6.2 shows the

final schematic for our double-resonance circuit. See table 6.1 for the circuit component

values we used.

LT 

1H 31P 
CF 

CHT 
CT 

CLT 

LHM 

LS 

LLM 

Figure 6.2: The layout of our final MRI of solids double-resonance circuit.
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Table 6.1: Table of the actual (approximate) values used for our double-resonance
circuit components

LT 60nH
CT 14.3pF
CF 15.6pF
LHM 20nH
LS 120nH
CST 1pF
LST 20nH
CHT 1-10pF variable

LLM & extra isolation inductor 30nH
CLT 5-25pF variable

6.1.2 Preliminary Decoupling Results

Using this probe, we were able to get high-power pulses (T90 < 10µs) for both 31P and

1H channels. With appropriate filters in place - a phosphorus notch filter along the

phosphorus line between the probe and transmit/receive switch and a 1H pass filter

on the proton line after the proton amplifier - we were able to test our line-narrowing

sequence on the wet small pork rib sample with and without cw proton decoupling. As

can be seen in figure 6.3, cw decoupling extended the effective T2 of the line-narrowing

sequence, and this resulted in a spectrum narrowed by nearly a factor of three. The

overall peak amplitude was also boosted by approximately a factor of four because of

the line-narrowing factor and the initial t = 0 point starting off with a higher signal.

The t = 0 point determines the total integral underneath the frequency spectrum,

so if both t = 0 points had the same amplitude, than we would expect a factor of three

peak amplitude increase to go along with the factor of three narrowing. The extra

boost in amplitude in the frequency spectrum comes from the time domain signal

having a higher signal at t = 0 when decoupling is applied. This makes sense because

the ‘t = 0’ point we measure is not the true t = 0 point; it is actually taken after

the first pulse block of our line-narrowing sequence (≈ 6∆ after the excitation pulse).
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Figure 6.3: Effects of proton decoupling to enhance our line-narrowing of 31P in bone
mineral. (A) Time domain data using our quadratic echo line-narrowing sequence,
either with (blue) or without (red) simultaneous cw proton decoupling. (B) The effec-
tive line-narrowed spectrum, either with (blue) or without (red) the use of cw proton
decoupling, obtained by Fourier transformation of the double exponential fits (red and
blue thick lines) to the time-domain data in A.

If we just had homonuclear spin interactions (Zeeman and dipolar interactions), then

our line-narrowing pulse sequence would make the ‘t = 0’ point taken after the first
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pulse block have the same amplitude as right after the excitation pulse (true t = 0).

However, in the complicated spin system of bone mineral, the interactions between

1H and 31P are also acting and left unaffected by the line-narrowing pulse block. The

difference in amplitude in the two time-domain plots in the measured ‘t = 0’ point

thus shows that decoupling is improving the natural decay of the signal due to these

heteronuclear interactions over the short 6∆ time period before we acquire our ‘t = 0’

point.

This preliminary data supports our hypothesis that we can enhance spatial reso-

lution through use of proton decoupling in our bone mineral samples. The next steps

would be to use cw decoupling for imaging. To make use of the longer effective T2 to

provide higher spatial resolution, we would need to take more points for each pseudo-

FID in the time domain. This would greatly increase the imaging time (e.g. if one

doubles the number of points in the pseudo-FID to double the image resolution, one

must take eight times as many points for a 3D image). Here we would need to make

use of sparse imaging and reconstruction techniques to image in a reasonable length

of time. Future steps to enhance spatial resolution would be to use more complicated

decoupling sequences to push the line-narrowing further. A factor of three enhance-

ment is far from the theoretical factor of 1000. However, this preliminary data was

taken using the simplest form of decoupling, and many future experiments can be done

exploring other decoupling schemes.

6.2 Future Applications of MRI of Solids

This thesis work focused predominately on biomedical samples since we were interested

in enhancing current MRI techniques predominately used in medicine. However, our

MRI of solids technique can be used on a wide variety of samples in a wide variety of
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scientific disciplines. In this section, we discuss some possible future applications of

our MRI of solids technique.
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0.94

T1
 (

s)

150010005000-500
Frequency (Hz)

 Without applied pressure
 With applied pressure

Figure 6.4: Change in T1 with pressure in a sample of orange PDMS-based rubber
inside glass cylinder at 4 Tesla. The measured T1 is plotted over the portion of the
frequency spectrum where the peak of the signal is located, before applying pressure
(red) and after applying pressure (blue). T1 for each frequency was determined from
15 saturation recovery experiments using a wide range of delay times.

6.2.1 Probing Granular Material

Granular materials display complex spatial response to applied pressures including

anisotropic stress propagation along force chain networks. Imaging the response of

granular media at the particle scale is crucial for understanding their mechanical be-

haviour during loading. Two-dimensional (2D) imaging techniques have been used for

many years, but 3D imaging remains a significant challenge. Most imaging techniques

rely on resolving deformation from stress-induced birefringence in an elastic medium.

These techniques can not be easily extended to 3D packings. Our MRI of solids tech-

nique may be helpful in imaging the location of particles as well as contact forces
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between particles in 3D granular material.

T1 change 
expected in 
darker regions 
due to local 
pressure 
differences. 

Figure 6.5: Imaging the contact forces between granular particles in 3D by using T1

contrast and our MRI of solids technique. In certain samples (e.g. C60 and rubber),
T1 has been shown to change with pressure and we can use this as a local reporter of
forces between granules.

Contrast in conventional MRI images of 1H result from different T1 or T2 relaxations

in the sample, and these relaxation times depend on the local environments of the nuclei

being imaged. Studies have already shown pressure dependence of the T1 relaxation

of 13C in C60 samples [108] as well as for 1H in rubber [109]. For even rather modest

applied pressures, we have seen similar dependence for 1H in natural and PDMS-based

rubber (see figure 6.4). To boost the change in T1 with pressure, we plan to add super

paramagnetic particles to the rubber during mixing. The pressures between granules

can also be enhanced by making granules with a rubber coating about a hard core.

One can then theoretically use the local T1 changes of the granular particles to report

on locally applied forces (see figure 6.5) and map out the spatial force distributions

throughout the granular material. The smaller dipolar couplings of 1H in rubber (due

to the polymer dynamics) means our line-narrowing technique may be effective at

providing higher-resolution images. Thus, there is potential to resolve both positions
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and forces in granular media in 3D using our MRI of solids technique.

6.2.2 Other Potential Samples of Interest

Some other potential samples and applications for our MRI of solids technique include

mapping out the porous channels in rock or using T1 or T2 constrast imaging in silicon

to find broken circuit connection in 3D stacks of silicon chips.

Mapping the pore-network inside carbonate or sandstone rock is very important

for determining promising oil and natural gas sites, and for geosciences in general

[110, 111]. Many groups are exploring the use of micro-CT for determining these pore

networks [111, 112], but the use of NMR has been limited to measuring the diffusion

of water through the sample [110, 113]. Our MRI of solids technique may offer another

way to image the material itself through the signal from 13C in carbonate rocks or 29Si

in sandstone rocks.

In order to continue the Moore’s Law trend to fit more and more transistors on

smaller and smaller microchips, a new strategy for filling space with transistors will

need to be implemented. One implementation is to move beyond 2D chips into 3D

stacks of chips. However, ensuring good connections between chips then becomes

vital, and finding this missed connection inside a 3D opaque object proves challenging.

Currently, engineers recursively cut the faulty piece into four pieces until they determine

the location of the faulty connection. If one could do this non-destructively by just

looking at a 3D MRI image, a lot of physical labor could be saved. The currents

through connected wires induce magnetic fields in the surrounding silicon. There are

currently groups attempting to mapping these very small induced magnetic fields using

superconducting quantum interference devices (SQUID) [114]. However, measuring

these magnetic fields inside a 3D chip becomes more challenging the larger the chip

becomes since the SQUID is measuring fields at the outside surface. It would be very
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helpful to see ‘inside’ the 3D chip, for which MRI of solids techniques will be helpful.

The induced magnetic fields from currents through the wires would change the local

relaxation properties in the nearby silicon and could possibly be imaged using T1 or

T2 contrast imaging. A broken connection will have no current flowing and no induced

magnetic fields, so one should see a difference from its working counterparts.

Of course, these potential applications have not yet been demonstrated, but they

still serve as examples of how this work can be applied in a variety of different fields

to answer a variety of interesting scientific questions.

6.3 Future Applications of Image Reconstruction

Algorithms

Along with the MRI of solids techniques discussed in this work, there are many broader

applications of the sparse image reconstruction algorithms we have developed. In this

section, we discuss just a few of the potential uses of these reconstruction algorithms

for a wider variety of imaging modalities.

Along with sparse Cartesian sampling in MRI, one can imagine using our recon-

struction algorithms to help regrid radially-sampled data (sparse or dense). Most fast

image reconstruction algorithms involve regridding to a uniformly-spaced Cartesian

grid, but this introduces streaking artifacts to the image. Using image constraints to

help fill in the gaps in the regridded data may lead to higher quality images. One

would need to first figure out how to satisfy the projection to return measured points

to their measured values, since the regridded points no longer correlate to directly mea-

sured points. However, one could use a model of how the measured points contribute

to each point on a grid (weighted by the distance of the grid point to each measured

point) and allow for noise variation using methods similar to the error handling meth-

164



ods discussed in this thesis work. Radial sampling also does not only pertain to MR

imaging. Computed tomography (CT) acquires data through 1D projections just like

radial sampling, and so these better image reconstruction methods could potentially

help CT imaging as well.

We have already shown how useful our reconstruction technique is for speeding up

acquisition of multi-dimensional NMR data. An obvious next step is to apply this

reconstruction technique for multi-dimensional NMR experiments measuring various

relaxation times (usually taking a 2D spectrum with different delay times in the 3rd

dimension), as was done with SIFT [99]. These 2D spectra all look the same, but

the amplitudes of the peaks change. One can then imagine densely sampling the first

2D spectra to get a very accurate image mask, and using that mask to reconstruct

the rest of the slices sampled sparsely to speed-up total acquisition time. With faster

acquisition time, higher-dimensional (4D, 5D) NMR experiments can be taken without

a significant time constraint.

Our reconstruction techniques are designed for imaging modalities that make use

of Fourier transforms from the measured reciprocal space to the image domain. Thus

another imaging modality that can make use of these algorithms is x-ray crystallogra-

phy. Crystallography naturally has many symmetries that could be used to form tight

constraints on the data and enable very sparse sampling to be done.

6.4 Final Thoughts

The goal of this thesis work was to implement the quadratic echo line-narrowing pulse

sequence for use in MRI of solids. In this process we have uncovered more potential

uses for this technique, as well as developed a sparse image reconstruction algorithm

that is widely applicable. At the start of this project, we knew in theory that the
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quadratic echo line-narrowing technique should work for imaging, but we had no idea

how hard it would be to implement this idea in practice. We relied on the 31P in

bone mineral and soft tissues to behave similarly to 13C in buckyballs or 29Si in crys-

talline silicon, despite its more complex environment. We needed the animal imaging

system to be capable of handling the pulse sequences and fast gradient transients we

required. We encountered many unexpected challenges along the way that could have

greatly hindered the applicability of our technique. Fortunately, for every problem we

encountered, we eventually found a solution and learned much more in the process. Ul-

timately, this thesis work has successfully built a strong foundation for many exciting

future experiments involving MRI of solids.
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Appendix A

Measurements of Gradient Ramp

Times

In the table below, I provide the measured gradient ramp times for different gradient

amplitudes in the three gradient directions using the “ramp off” gradient ramp mode

on the Bruker system. We only measured gradient amplitude values between 2.5% and

25% because we never used higher gradient amplitudes due to the constraints of fitting

our sample within a single octant of our FOV.

Table A.1: Table of gradient ramp times for all 3 directions with different gradient
amplitudes

Gradient Amp. (%) Gx Ramp (µs) Gy Ramp (µs) Gz Ramp (µs)
2.5 49 54 54
5 40 46 39
10 39 36 32
15 40 45 30
20 51 53 37
25 61 62 47

Since the x and y gradients behaved very similarly, we used the quadratic fit of the

x gradient ramp times to the gradient amplitude, Gx, for calculating both αx and αy.
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The quadratic fits used to calculate the gradient scale factors, αx/y/z, are then given

by:

X/Y Gradient Ramp Time = 52.5− 2.5Gx + 0.12G2
x µs, (A.1)

Z Gradient Ramp Time = 61.3− 4.5Gx + 0.16G2
x µs. (A.2)
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Appendix B

Practical Applications for Radial

Sampling

In this appendix, I discuss details of implementing radial sampling using methods pro-

gramming on the Bruker system. In my radial sampling method program (meri rad.m)

L would be the parameter entered in the “Number of radial slices in theta” param-

eter (or ‘slice num’ variable), and this number would obey equation 4.11 if we desire

dense sampling of k space. Since we are actually using the ‘points on the surface of

the sphere’ as our gradient directions, the total number of points on the surface of

the sphere (given by equation 4.7) would also give the length of my gradient array

and thus the number of separate scans we would need to take to complete the image.

Equations 4.6 and 4.7 are used to determine the gradient directions for dense radial

sampling imaging procedures. Of course in a computer program we cannot have a

non-integer number of points (or gradient directions), so M` is rounded to the nearest

integer in both equations. Since the imaging method programming is in C, we make

use of the ‘cmath’ library which has only ‘floor()’ and ‘ceil()’ options for rounding

(http://www.cplusplus.com/reference/clibrary/cmath/). Using these functions we can
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create our own rounding function given by:

round(num) = ceil

(
floor(2 · num)

2

)
, (B.1)

where the ordering of ‘ceil()’ and ‘floor()’ as given makes any 0.5 decimal round up (as

we might prefer to be sure we are densely sampling) and switching the ordering would

make it round down. The equations we actually use in our radial imaging program

then become:

M` = 2L · ceil

(
floor(2 sin

(
`π
L

)
)

2

)
(B.2)

and

Total number of Points = 2 +
L−1∑
`=1

2L · ceil

(
floor(2 sin

(
`π
L

)
)

2

)
. (B.3)
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Appendix C

Deriving 3D Density Weighting

Function

The widely accepted density compensation function of k2 for 3D radial sampling has

the problem of becoming zero at the very important ~k = 0 point where we have our

highest signal. This ‘~k = 0’ problem is addressed in the work of Ramachandran and

Lakshminarayanan [68] for radiographs’ and electron micrographs’ reconstruction and

applied to MRI by Joseph [71]. Having k2 as the density compensation is correct if

we would be sampling the entirety of ~k space. Since we are discretely sampling ~k

space over a finite range, the k2 density compensation introduces errors, particularly

for low ~k values. To determine a more accurate density compensation function we

follow the method laid out by Ramachandran and Lakshminarayanan [68]. For radial

sampling, we are interested in the density compensation along the radial dimension,

so this calculation becomes a 1D problem along the radial direction of each acquired

‘spoke’ in ~k space.

We would like to find the coefficients, q(r), along the radial direction in image space
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such that

q(r) =

∫ A/2

−A/2
k2 exp(2πikr)dk (C.1)

where A is the total bandwidth in k space, given by 2Npointsδk = 1/δr, and Npoints are

the number of sparse dwell points in each pseudo-FID (equal to the image size divided

by two). Evaluating the integral you get

q(r) =
2Aπr cos(Aπr) + (A2π2r2 − 2) sin(Aπr)

4π3r3
. (C.2)

Now we want to discretize so that r = nδr and we use A = 1/δr, which gives

q(nδr) =
2πn cos(πn) + (π2n2 − 2) sin(πn)

4π3(nδr)3
. (C.3)

Since n is an integer, cos(πn) = (−1)n and sin(πn) = 0, this becomes,

q(nδr) =
(−1)n

2π2n2(δr)3
. (C.4)

For n = 0, this compensation factor explodes, so to find the limiting value as n ap-

proaches zero, we can go back to C.2 and take the limit as r goes to zero. This gives

lim
r→0

q(r) = lim
r→0

2Aπr cos(Aπr) + (A2π2r2 − 2) sin(Aπr)

4π3r3
(C.5)

= lim
r→0

2Aπr cos(Aπr)− 2A2π2r sin(Aπr)

12π3r2
(C.6)

+
2A2π2r sin(Aπr) + A3π3r2 cos(Aπr)− 2Aπ cos(Aπr)

12π3r2
(C.7)

= lim
r→0

A3

12
(C.8)

=
1

12(∆r)3
(C.9)
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where we use L’Hospital’s rule in the second line.

Overall, the desired coefficients are

q(n∆r) =
1

12(∆r)3
n = 0

−1

2π2n2(∆r)3
n odd

1

2π2n2(∆r)3
n even

(C.10)

We take the discrete inverse Fourier transform of q(n∆r) in order to find the correct

density compensation array to use for our ~k-space data. Taking the discrete Fourier

transform,

δr
∞∑
−∞

q(nδr) exp(−i2πnδr) (C.11)

gives the desired k2 relation.
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Appendix D

Double-Resonance Probe Design

Details

In this appendix we discuss the details of Tang et al.’s [107] double-resonance circuit

design and how we theoretically estimated the component values needed for our own

double-resonance probe using 31P and 1H in a 4 Tesla magnet.

D.1 Proton Trap

The simplest component in the double resonance circuit is the proton trap, made by

having a capacitor (CT ) and inductor (LT ) in parallel tuned to the proton frequency

(for our 4T imaging magnet, this is 170 MHz). This would then act as a very high

impedance at the proton frequency (and low impedance at the lower phosphorus fre-

quency), essentially isolating the low frequency part of the circuit from the proton

frequency.
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The complex impedance of the trap is given by

ZTrap =
X2
CT
RT + i[XCT

R2
T + (XLT

+XCT
)XLT

XCT
]

R2
T + (XLT

+XCT
)2

(D.1)

where XCT
= −1/ωCT is the reactance of the capacitor, XLT

= ωLT is the reactance

of the inductor, and RT is the resistance of the inductor. At the resonant frequency,

ω0 =
√

1
LTCT

− R2
T

L2
T

, this impedance becomes LT

CTRT
. We can then choose our values for

LT and CT by making sure the resonance frequency is at the proton Larmor frequency,

and also have LT >> CT since we want the impedance to be as large as possible at

resonance. However, if the inductance is too high, this will decrease the low frequency

circuit efficiency.

D.2 High Frequency Circuit

1H 
CF 

CHT LHM 

LS 

Figure D.1: Approximation of the high frequency circuit taking the proton trap as a
very high impedance to ground.

The high frequency part of the double resonance circuit can be approximated as

shown in Figure D.1 if we treat the proton trap as a very high impedance (or open
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circuit). The complex impedance of this high frequency circuit is then given by

ZHigh Freq = i

[
XCF

+
XLHM

(XLS
+XCHT

)

XLS
+XCHT

+XLHM

]
(D.2)

using the same reactance convention as above, and the T ’s and M ’s in the subscripts

refer to ‘tuning’ and ‘matching’, respectively. Those that are tuning elements mostly

determine the resonance frequency of the circuit (and involve variable capacitors to help

with tuning), whereas matching elements mostly contribute to the overall impedance

of the circuit, which we want to eventually match to 50Ω. This impedance is given

not taking into account the resistances of the inductors for simplicity’s sake. However

we use the full complex impedance, including resistances, in order to find approximate

values for CF , LHM , and CHT to satisfy both the resonant and matching condition. To

do this, we estimate appropriate values for the inductor resistances and the inductance

of the sample coil, LS, which is determined by our sample dimensions.

For further isolation from the low frequency circuit, one can add an inductor to

ground at the proton input (as Tang, et al. suggest). We also want XCF
� XLHM

so that CF has nearly infinite impedance and LHM has nearly zero impedance for the

lower phosphorus frequency.

D.3 Low Frequency Circuit

The low frequency part of the double resonance circuit can be approximated as shown

in Figure D.2 if we treat CF to have infinite impedance and LHM to have nearly

zero impedance at the low phosphorus frequency. The complex impedance of this low
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31P 

CT 

CLT LS LT, eff 

LLM 

Figure D.2: For this low frequency circuit approximation we are taking CF to be of
infinite impedance and LHM to be zero.

frequency circuit is then given by

ZLow Freq =
iXLLM

(XLS
+XLT,eff

+XCLT
)

XLLM
+XLS

+XLT,eff
+XCLT

(D.3)

using the same conventions as above. Again, this impedance is given not taking into

account the resistances of the inductors for simplicity’s sake. However we use the full

complex impedance, including resistances, in order to find approximate values for CLT

and LLM to satisfy both the resonant and matching condition. To do this: we estimated

LT,eff by using previously found values for the trap components, we used the known

sample coil inductance, and estimated appropriate values for the inductor resistances.

We also found the values needed if we wanted to tune this low frequency circuit to

other nuclei (like 13C and 29Si), and conveniently found this could be achieved simply

by increasing the capacitance of CLT without changing any of the other components.

The final calculated theoretical values for the components is given in Table D.1.
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Table D.1: Table of the theoretical calculations for the values of our double resonance
circuit components

LT 100nH
CT 8.7pF
CF 18.7pF
LHM 100nH
LS 300nH
CHT 4.1pF (1-10pF variable)
LLM 200nH
CLT 9.6pf (P31), 23pf (C13), 38pf (Si29) (5-25pF variable)
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in Multidimensional Fourier Transform of arbitrary sampled NMR data sets.

Journal of Magnetic Resonance, 188, 344–356 (2007).

[98] Y. Matsuki, M. T. Eddy, R. G. Griffin, and J. Herzfeld. Rapid Three-Dimensional

MAS NMR Spectroscopy at Critical Sensitivity. Angewandte Chemie Interna-

tional Edition, 49, 9215–9218 (2010).

190



[99] Y. Matsuki, T. Konuma, T. Fujiwara, and K. Sugase. Boosting Protein Dynam-

ics Studies Using Quantitative Nonuniform Sampling NMR Spectroscopy. The

Journal of Physical Chemistry B, 115, 13740–13745 (2011).

[100] D. States, R. Haberkorn, and D. Ruben. Journal of Magnetic Resonance, 48,

286 (1982).

[101] Y. Shrot and L. Frydman. Compressed sensing and the reconstruction of ultrafast

2D NMR data: Principles and biomolecular applications. Journal of Magnetic

Resonance, 209, 352–358 (2011).

[102] L. Frydman, T. Scherf, and A. Lupulescu. The acquisition of multi-dimensional

NMR spectra within a single scan. Proceedings of the National Academy of

Sciences, USA, 99 (2002).

[103] F. D. Doty. Probe Design and Construction. Encyclopedia of Magnetic Resonance

(2007).

[104] F. D. Doty, R. R. Inners, and P. D. Ellis. A Multinuclear Double-Tuned Probe for

Applications with Solids or Liquids Utilizing Lumped Tuning Elements. Journal

of Magnetic Resonance, 43, 399–416 (1981).

[105] F. D. Doty, T. J. Connick, X. Z. Ni, and M. N. Clingan. Noise in High-Power,

High-Frequency Double-Tuned Probes. Journal of Magnetic Resonance, 77, 536–

549 (1988).

[106] E. Najim and J.-P. Grivet. Efficiency Estimation for Single-Coil, Separate-Input,

Double-Tuned NMR Probes. Journal of Magnetic Resonance, 93, 27–33 (1990).

191



[107] P. Tang, W.-J. Chien, and G. S. Harbison. Double-resonance circuit for nuclear

magnetic resonance spectroscopy. Solid State Nuclear Magnetic Resonance, 2,

343–348 (1993).

[108] R. Kerkoud, P. Auban-Senzier, J. Godard, D. Jerome, J.-M. Lambert, and

P. Bernier. Effects of pressure on the thermodynamic properties of C60 Stud-

ied by 13C NMR. Advanced Materials, 6, 782–786 (1994).

[109] A. Asano, S. Hori, M. Kitamura, C. Nakazawa, and T. Kurotsu. Influence of

magic angle spinning on TH
1 of SBR studied by solids stsate 1H NMR. Polymer

Journal, 44, 706–712 (2012).

[110] Y.-Q. Song, S. Ryu, and P. N. Sen. Determining multiple length scales in rocks.

Nature, 406, 178–181 (2000).

[111] V. Cnudde, B. Masschaele, M. Dierick, J. Vlassenbroeck, L. VanHoorebeke, and

P. Jacobs. Recent progress in X-ray CT as a geosciences tool. Applied Geochem-

istry, 21, 826–832 (2006).

[112] H. Dong and M. J. Blunt. Pore-network extraction from micro-computerized-

tomography images. Physical Review E, 80, 1–5 (2009).

[113] C. H. Arns. A comparison of pore size distributions derived by NMR and X-ray-

CT techniques. Physica A, 339, 159–165 (2004).

[114] L. Knauss, A. Orozco, and S. Woods. Advances in magnetic-based current imag-

ing for high resistance defects and sub-micron resolution. In Proceedings of the

11th International Symposium on the Physical and Failure Analysis of Integrated

Circuits, pages 267–270 (July).

192


	Table of Contents
	List of Figures
	List of Tables
	Words of Acknowledgment
	Introduction
	Introduction
	Review of the Field Prior to this Research
	Living with the Short T2 of Solids
	Making Solids Look More Like Liquids
	Previous Work Imaging Bone
	Our Method

	Products of this Research
	Organization of the Remaining Chapters

	NMR and MRI Basics
	Basics of NMR
	Larmor Frequency and Precession
	Classical Approach to NMR
	Relevant Spin Interactions

	Basics of MRI
	k Space
	Traversing k Space
	Sampling, Field-Of-View, and Spatial Resolution
	Exploiting Hermitian Symmetry

	Equipment
	NMR Equipment
	Imaging Equipment

	Challenges of MRI of Solids

	Quadratic Echo Line-Narrowing and Imaging Pulse Sequences
	Brief History of the Development of the Line-Narrowing Sequence
	Average Hamiltonian Theory
	Testing Our Model
	Designing the Quadratic Echo Line-Narrowing Pulse Sequence

	Imaging Sequences
	Second Generation Pulse Block
	Low Resolution Imaging Sequence
	High Resolution Fast Switch Imaging Sequence
	High Resolution Slow Switch Imaging Sequence

	Important Considerations for MRI of Solids
	Lowering Pulse Power
	Imaging Sequence Used for MRI Results


	High Resolution MRI of Solids
	MRI of Solids Using Cartesian Sampling
	Cartesian Sampling of k Space
	Cartesian Sampling Analysis
	Cartesian Sampling Results

	MRI of Solids Using Radial Sampling
	Radial Sampling of k Space
	Radial Sampling Analysis
	Radial Sampling Results


	Imaging Solids Faster
	Sparse MRI
	Sparse Sampling
	Sparse Sampling Results

	Reconstruction Algorithms
	Notation
	Projections
	Alternating Projections
	Difference Map
	What are the differences between the two algorithms?
	Metrics to Monitor Convergence
	Choosing Error Thresholds
	k Space Error Handling
	Image Space Error Handling

	Image Reconstruction Results
	Reconstruction Results on Sparse MRI Data
	Reconstruction Results on 2D NMR Data
	Further Comments


	Future Work
	Enhancing Resolution via Decoupling
	Double Resonance Probe
	Preliminary Decoupling Results

	Future Applications of MRI of Solids
	Probing Granular Material
	Other Potential Samples of Interest

	Future Applications of Image Reconstruction Algorithms
	Final Thoughts

	Measurements of Gradient Ramp Times
	Practical Applications for Radial Sampling
	Deriving 3D Density Weighting Function
	Double-Resonance Probe Design Details
	Proton Trap
	High Frequency Circuit
	Low Frequency Circuit

	Bibliography

