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Abstract
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2007

This doctoral dissertation is a detailed examination of the effects of strong π pulses

applied to a large system of spin-1/2 nuclei. Nuclear magnetic resonance experiments in

a variety of dipolar solids are shown to defy conventional expectations set by the delta-

function pulse approximation. Observed effects include multiple π-pulse echo trains with

measurable coherencewell beyond the expectedT2 for short delays between pulses, an even-

odd asymmetry in the echo amplitudes where even-numbered echoes are larger than odd-

numbered echoes for long delays between pulses, a fingerprint pattern in the echo train for

intermediate delays between pulses, and a strong dependence of the echo train decay rate

on the π pulse phase.

Many advanced pulse sequences and proposed quantum algorithms frequently rely on

the delta-function pulse approximation to describe how a spin system evolves under the

action of many pulses. In particular, it is assumed that π pulses do not refocus the dipolar

coupling. However, the action of the system’s internalHamiltonian during a real finite pulse

opens new coherence transfer pathways that lead to the observed effects. Visualization of

the entire density matrix shows a unique flow of quantum coherence from non-observable

to observable cells when applying repeated π pulses. This work uses Average Hamiltonian

theory, combinedwith exact quantum calculations, to show that the pulse power required to

approximate a real pulse as a delta-function pulse appears to be arbitrarily large and depends

on the system size, spin-spin coupling strength, rapidity of applied pulses, and the spread

of local magnetic fields.
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Chapter 1

The Basic Problem
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In the most general sense, this thesis is concerned with the experimental observation and

subsequent theoretical explanation of the discrepancy between the two trends shown in the

above graph. Both the green dots and the peaks of the red trace are expected to agree from

well-established principles of nuclear magnetic resonance. It is clear, however, that they do

not. In order to appreciate the significance of this discrepancy some background about how

it is measured and what is expected fills a considerable portion of this work. Also presented

is a preponderance of supporting experiments that attempt to correct extrinsic sources of
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CHAPTER 1. THE BASIC PROBLEM 2

imperfection or find external dynamics that could be responsible. These supporting exper-

iments have shown that the effects are universal among spin-1/2 systems (and possibly in

pseudo-spin systems) and insensitive to many experimental parameters.

The different trends represent two standard measures of the transverse spin relaxation

time T2. Initially we proposed to measure T2 in one sample as a simple first step to under-

standing the principles of decoherence in other materials. However, the striking difference

between the two trends required an explanation. This discrepancy may have occasionally

been observed in other work but attributed to experimental imperfections or to the dif-

ficulty achieving strong enough pulses. While it is certainly possible to produce similar

looking graphs by introducing such imperfections, many experimental improvements that

are currently achievable have not made the effect disappear.

This basic problem relates to quantum control because the two sets of data in the above

graph are generated by π pules. These π pulses are ubiquitous in the design of quantum

algorithms for use in a quantum computer. For example, bang-bang control sequences con-

sisting of repeating blocks of π pulses have been proposed to help isolate a spin system from

its environment [93]. Furthermore, the nuclear spin system studied here can be considered

an ideal system of many qubits where the magnetic coupling between spins serves as the

entanglement process. Therefore, these nuclear magnetic resonance experiments provide a

forward test of the most fundamental principles that are being built upon in the emerging

field of quantum information processing.

In particular, this thesis finds that the application of many real π pulses (red peaks) to a

large spin systemhas completely different effects than applying a single π pulse (green dots)

to the same system. Most surprisingly, these finite pulse effects are not perturbative. That

is, no small correction to the conventional expectations can predict the correct behavior.

To solve the problem, average Hamiltonian theory was applied to this new regime of

strong but finite pulses. From this theoretical work, an understanding of quantum coher-

ence transfer pathways led to the discovery that the coupling between spins is a large-scale

many-body effect that cannot be ignored even during the fastest realizable pulses. This

result is entirely new and only requires either strong coupling between few neighbors, or

weak coupling between many neighbors.

The following is a chapter by chapter synopsis for the reader who may wish to jump to
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sections more pertinent to his/her interests:

Chapter 2 develops some simple intuitions about spin and the techniques with which to

solve for its behavior. Because nuclear magnetic resonance rests on such a solid theoretical

background, it is superfluous to summarize it here. For a well-written course, see refer-

ence [79]. Nevertheless, I feel compelled to offer some important guiding concepts that are

frequently revisited in later chapters including the concept of precession, spin interactions,

relaxation, superposition states, expectation value, the Bloch sphere, the density matrix,

and commutability. Other theoretical concepts are presented later in the context in which

they are needed.

Chapter 3 is an overview of the required tools used to perform high-resolution nuclear

magnetic resonance experiments including a description of a high-field superconducting

magnet, a schematic for heterodyne detection, two designs for resonant tank circuits, a de-

scription of pulse attributes, and an introduction to the Fourier transform. This thesis work

did not create any new equipment, any new samples, or any new techniques of measure-

ment. The results of this thesis can be obtained from the careful application of basic tools

and principles of magnetic resonance or even in analogous systems with the same Hamil-

tonian.

Chapter 4 presents the many puzzling experiments with π pulses that originally in-

spired this thesis. In addition to the discrepancy between the trends of the green dots and

red peaks, observed effects include an even-odd asymmetry between the heights of even-

numbered echoes and odd-numbered echoes when τ becomes large, a repeating finger-

print in subsets of the echo train for intermediate τ , and a sensitivity of the echo train to π

pulse phase. In the initial phase of discovery, many experiments were performed that exam-

ined different aspects of the puzzle. This thesis focuses of the few experiments that yielded

the most repeatable and most pronounced effects. In addition, this chapter describes some

three-pulse experiments that produced strikingly unexpected results, but unfortunately did

not lead to a deeper understanding of the source cause for the effects.

Chapter 5 outlines methods of calculating the evolution of the measurable coherence

using the delta-function pulse approximation and the Zeeman and dipolar Hamiltonians.

Using these approximations, the experiments that produce the two trends in the first figure

are expected to decay identically. This chapter quantifies the conventional expectations for
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delta-function π pulses.

Chapter 6 details many experiments that explore extrinsic effects in the pulse quality

and the total system Hamiltonian. These experiments helped to develop an understanding

the real pulse as it differs from the idealized delta-function pulse. Studies include analysis of

the nutation experiment, tests of rf field inhomogeneity, measurement of pulse transients,

dependence of effects on pulse strength, and improvements through composite pulses.

Chapter 7 details more experiments that search for contributions to the system’s free-

evolution besides the dipolar coupling and Zeeman interaction. These studies include non-

equilibrium effects, temperature effects, different systems of spin-1/2 nuclei, a single crystal,

and magic angle spinning.

Chapter 8 presents a series of exact calculations using the constraints imposed by the the

many experiments of Chapters 6 and 7. The first attempt at simulating the observed results

because the calculations involved a small number of spins with the weak natural coupling

of silicon. Because many experiments were performed in other dipolar solids, we attempted

to simulate the observed effects using much stronger couplings. These calculations quali-

tatively reproduced the long-lived coherence and the sensitivity on π pulse phase.

Chapter 9 presents more analytical calculations seeking insight into the physics of the

exact calculations. The pulse sequences are analyzed using average Hamiltonian theory.

From this analysis, special terms are identified that contribute to the extension of measur-

able coherence in simulations with strong but finite pulses. Furthermore, the echo train tail

height is sensitive to the total number of spins that are included in the calculation. This de-

pendence on system size suggests that real pulses applied to a macroscopic number of spins

may lead to the observed behaviors.

Chapter 10 visualizes the entire density matrix to show the effects of the new terms

identified in Chapter 8. Regions of the density matrix that are normally inaccessible in the

delta-function pulse approximation are connected to the measurable coherence by novel

quantum coherence transfer pathways that play an important role in the long-lived tail.

Chapter 11 explores possibleways to exploit the behavior of themany spin systemduring

multiple finite pulses. We present multiple pulse analogies of the Hahn echo and theMagic

echo. Future work in this area is currently underway to include pulse sequences engineered

for imaging research.



CHAPTER 1. THE BASIC PROBLEM 5

Chapter 12, in conclusion, presents a summary of the implications of this work for quan-

tum computation. Quantum algorithms in the future will need to take into account the

always-on interactions between qubits or find a clever way of setting the interactions iden-

tically to zero during pulses.

This work involved close collaboration with other members of the lab whomade crucial

contributions to the understanding of the problem. With pleasure, I will try to highlight

their specific contributions in this thesis where appropriate.



Chapter 2

Spin Control

What is spin? In the context of this thesis, “spin” refers to intrinsic quantized angular

momentum, but the ordinary notion of spinning objects is not an entirely ill-suited analogy.

This introduction to magnetic resonance spectroscopy begins with the common intuitions

of spin in the tangible macroscopic world to help describe those elusive properties in the

intangible microscopic world.

While, ultimately, the solution to the basic problem of Chapter 1 requires a quantum

description as introduced in section 2.3 and detailed in Chapters 5, 8, and 9, the classical

equations of motion described in this section are useful in determining the general aspects

of spin control.

2.1 Classical Precession and Relaxation

Edward Mills Purcell and Felix Bloch won the Nobel Prize in physics in 1952 for their inde-

pendent discovery of Nuclear Magnetic Resonance (NMR). Since then the study of nuclear

spins has led to tremendous developments in medical imaging as well as local probes of

condensed matter physics problems. Many wonderful introductory texts describe the basic

theories of NMR in great detail. For example, see references: [1, 23, 79]. In this thesis, a va-

riety of supporting experiments and calculations are presented with their guiding principles

as they are needed. Thus, instead of presenting the full gamut of NMR theory at the outset,

let us only build an intuition of magnetic resonance with the familiarity of the spinning top.

The natural tendency of a top-heavy object, such as a toy top, is to fall over due to gravity.

6



CHAPTER 2. SPIN CONTROL 7

Figure 2.1: A spinning top obeys the classical laws ofmotion by precessing in a cone. Impor-
tant parameters are the angular momentum ~L, the force due to gravity ~Fg, and the torque
~N . All vectors are drawn from the top’s center of mass. The vector between the pivot point
P and the center of mass is ~r (not shown).

Without spinning, it is virtually impossible to stand the top on its base point P (See Figure

2.1). Set it spinning, though, and the top seems to defy gravity as it stands on a table. The

force of gravity has not vanished, it still acts on the spinning top, but with a different result.

We can describe the natural tendencies of the spinning top by employing the basic laws

of mechanics introduced by Sir Isaac Newton. Newton’s second law states that the force

acting on any free body is equal to its change in momentum. This law can be extended to

spinning objects by setting the torque equal to the change in angular momentum.

~N =
d~L

dt
(2.1)

For a toy top, the spin angular momentum vector ~L is aligned along its symmetry axis

as shown in Figure 2.1. Therefore, equation (2.1) describes how the spinning top will move

as it struggles to maintain balance. In the case of a classical top, the force of gravity ~Fg

generates the torque
~N = ~r × ~Fg (2.2)

where ~r is parallel to ~L and points from P to the center of mass. The direction of the torque
~N is perpendicular to both ~Fg and ~L (Figure 2.1). Since the angular momentum ~L follows
~N according to equation (2.1), the spinning top will precess in a cone about its pivot point

P as shown in Figure 2.1.
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This notion of precession is the same for amagnetic dipolemoment ~µ in amagnetic field
~B. The magnetic field generates a torque on ~µmuch in the same way that gravity generates

a torque on the spinning top. However, in the case of magnetic fields, the force is always

perpendicular so that
~FB = (~µ× ~∇)× ~B (2.3)

where ~∇ is the differential operator in space. This force results in a torque after suitable

integration1.
~NB = ~µ× ~B (2.4)

For an idealized dipole, its total angular momentum ~J is related to its magnetic dipole mo-

ment through the gyromagnetic ratio γ.

~µ = γ ~J (2.5)

Putting all of these together we obtain the equation of motion for an isolated magnetic

dipole moment in a magnetic field that is not too different from the toy model.

d~µ

dt
= γ(~µ× ~B) (2.6)

Equation (2.6) is the basis of classical spin control. We rely on this simple description for

the general behavior of spins such as in Figures 4.6 and 4.9. For control, the experimentalist

manipulates the strength and direction of ~B, which changes the precessional behavior of ~µ

accordingly. For the experiments described in this thesis, a strong externally applied field

of order 10 Tesla (1 Tesla = 104 Gauss) is fixed along ẑ while a perturbative oscillatory field

of order 10∼1000 Gauss may be additionally applied in the xy-plane.

Because the externally applied magnetic field ~B = Bextẑ is so much larger than the

perturbing field, it is convenient to transform to a frame rotating about the z-axis where

the x̂ and ŷ coordinate vectors rotate with angular velocity ~ω = −ω0ẑ

dx̂

dt
= ~ω × x̂ (2.7)

dŷ

dt
= ~ω × ŷ. (2.8)

1Actually, the full derivation of the force and torque on a magnetic dipole moment in a magnetic field
requires a rather tedious multipole expansion inside the integrand, which I have selectively swept under the
rug. See Jackson’s graduate text in eletrodynamics [33].
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Then equation (2.6) becomes

δ~µ

δt
= ~µ× (γBext − ω0)ẑ = ~µ (2.9)

where ω0 = γBext is the Larmor precession frequency, named after Sir Joseph Larmor, and

the time derivative δ
δt
is taken in the rotating frame. The sense of the rotation is dependent

on the sign of γ.

Equation (2.9) states that amagnetic dipolemoment ~µ is stationary in the rotating frame

so long as the only applied magnetic field is the external magnetic field. Chapter 3 will

describe the application of additionalmagnetic fields in the rotating frame that act to change

the direction of ~µ.

In NMR experiments we measure the total magnetization of an object, which is the

vector sum of all the nuclear magnetic dipole moments.

~M =
N∑

i=1

~µi (2.10)

Typically, the polarization of nuclei reaches about 10−5∼10−6 in a 10 Tesla field. In many

respects, the total magnetization behaves like a simple magnetic dipole moment. However,

in NMR measurements, the macroscopic magnetization usually decays in a process called

spin relaxation.

The process of spin relaxation can be considered phenomenologically by introducing a

new term in each component of the torque equation for the magnetization.

dMz

dt
= γ( ~M × ~B)z −

Mz −M0

T1

(2.11)

dMx

dt
= γ( ~M × ~B)x −

Mx

T2

(2.12)

dMy

dt
= γ( ~M × ~B)y −

My

T2

(2.13)

Equations (2.11), (2.12), and (2.13) are commonly referred to as the Bloch equations where

the magnetization is given by the three-component vector ~M = (Mx,My,Mz) and the

relaxation times are given by T1 and T2. Note that as time progresses, the magnetization

in the transverse plane (xy-plane) tends to decay to zero while the magnetization along the

z-axis tends to return to its equilibrium valueM0.
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Figure 2.2: The magnetic field produced by ~µ2 affects the motion of ~µ1 and vice versa.

T1 is referred to as the spin-lattice relaxation time and results from interactions between

nuclei and their environment. These interactions serve to relax the nuclear spins so that

they eventually align with the external field. In this thesis, T1 times range from seconds to

hours. The other relaxation time, T2, is referred to as the transverse relaxation time because

it is perpendicular to the external magnetic field. Unlike spin-lattice relaxation, transverse

relaxation results from spin-spin interactions that conserve the total energy of the system.

Measured values of T2 are typically in the range of milliseconds.

This thesis focuses on the underlying dynamics that cause T2, particularly in the pres-

ence of applied pulses of magnetic fields. In terms of measurement, equations (2.11)-(2.13)

qualitatively predict the the correct behavior of the macroscopic magnetization ~M . How-

ever, the underlying dynamics of T2 require a quantum mechanical description. First, let

us develop our classical intuitions a bit further to understand how the interaction between

spins can lead to decay.

2.2 Classical Interaction of Magnetic Moments

Consider just twomagnetic dipolemoments ~µ1 and ~µ2 a distance d apart as shown in Figure

2.2. We can describe the effect that ~µ2 has on ~µ1 by noting that a magnetic dipole moment

produces its own local magnetic dipole field.
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The total effectivemagnetic field experienced by ~µ1 is obtained by adding the small local

magnetic field induced by ~µ2 to the large external magnetic field ~B. Then by equation (2.6),

~µ1 will precess about this total effective magnetic field. However, to complicate matters,

this local magnetic field changes in time as ~µ2 precesses. Even worse, the motion of ~µ2 is

determined in part by the motion and subsequent magnetic field of ~µ1.

The detailed balance of all of these dynamics is a daunting task. An elegant method for

solving the behavior of the entire system involves the quantum mechanical description of

spin. As a feature, the quantum description includes properties such as superposition that

are not possible classically. Even so, the classical description fails to describe measurements

of a single spin [71] or when the interaction between spins creates unobservable coherence

states. We describe these unobservable coherence states and their relevance to measurable

quantities further in Chapter 10.

2.3 The Quantum Description of Spin

The quantum mechanical description begins by considering transitions of the magnetic

dipole moment between two energy states. The state where ~µ points in the same direc-

tion as ~B is called spin up and denoted as |↑〉, while the opposite direction is called spin

down and denoted as |↓〉. In addition, any linear combination of the two spin states may be

written as

|ψ〉 = cos(θ/2) |↑〉+ eiφ sin(θ/2) |↓〉 (2.14)

where the coefficients are chosen to enforce the normalization condition 〈ψ|ψ〉 = 1 inWolf-

gang Pauli’s “bra-ket” notation [74]. Equation (2.14) represents the superposition state of a

single spin.

The physical interpretation of the spin state |ψ〉 requires a mapping back to an observ-

able quantity. This mapping is achieved by introducing the dimensionless three component

spin angular momentum operator ~I = (Ix, Iy, Iz), parallel to the magnetic dipole moment.

~µ = γ~~I (2.15)

The symbol ~ is Planck’s constant divided by 2π, named after Max Planck who first de-

scribed the theory of quantization. The appearance of ~ usually means that some quantity
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in the equation only takes on discrete values. In this case, it is the spin angular momentum

that is quantized.

By quantizing the spin angular momentum, the spin state is projected onto a particular

axis with a fixed set of possible values. For example, if the external magnetic field is aligned

along ẑ, then operating Iz on the spin up state yields the eigenvalue equation

Iz |↑〉 = mz |↑〉 (2.16)

wheremz is the projection of the spin state |↑〉 onto the z-axis. For the case considered here,
mz = +1/2 for spin up andmz = −1/2 for spin down, allowing only two possible states.

To project the state onto the x-axis and y-axis, the ladder operators are defined

I+ = Ix + iIy (2.17)

I− = Ix − iIy (2.18)

where

I+ |↑〉 = 0 (2.19)

I+ |↓〉 = |↑〉 (2.20)

I− |↑〉 = |↓〉 (2.21)

I− |↓〉 = 0. (2.22)

With these definitions for the spin angular momentum operators, we may calculate the

expectation values that give the observable quantities

〈Ix〉 = 〈ψ|Ix|ψ〉 =
1

2
sin(θ) cos(φ) (2.23)

〈Iy〉 = 〈ψ|Iy|ψ〉 =
1

2
sin(θ) sin(φ) (2.24)

〈Iz〉 = 〈ψ|Iz|ψ〉 =
1

2
cos(θ) (2.25)

so that the classical magnetic dipole moment is recovered as

〈~µ〉 = γ~〈~I〉 = γ~(〈Ix〉x̂+ 〈Iy〉ŷ + 〈Iz〉ẑ) (2.26)

Conveniently, θ and φ are well-suited to represent angles in a conceptual Bloch Sphere

[79] as depicted in Figure 2.3. Spins trace a path along the surface of the Bloch Sphere
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Figure 2.3: The Bloch Sphere representation of a magnetic dipole moment ~µ. Any orienta-
tion of ~µ can be described by the two phase angles θ and φ.

according to their expectation values 〈Ix(t)〉, 〈Iy(t)〉, and 〈Iz(t)〉. This representation is a

useful tool for visualizing the general behavior of many isolated spins as we show later in

Figures 4.6 and 4.9. Additionally, from the experimentalist’s perspective, the Bloch Sphere

allows an easy way to see how the direction of the magnetic dipole moment may be con-

trolled with an appropriate manipulation of θ and φ.

With this representation, we proceed to describe the interactions of the spins with the

environment andwith each other. First, the tendency for amagnetic dipolemoment to align

with an externally applied magnetic field is represented by an energy relationship.

U = −~µ · ~B (2.27)

The energy U is less if the dot product ~µ · ~B is positive, meaning that the ground state

configuration has ~µ and ~B pointing in the same direction. For a fixed magnetic field, the

two spin stateswill have different energies. This energy splitting is called theZeeman energy

splitting after Dutch physicist Pieter Zeeman.

In quantum mechanics, the energy is converted to an operator called the Hamiltonian

named after Irish mathematician SirWilliamHamilton. This Zeeman Hamiltonian is writ-

ten as

HZ = −γ~IzBext (2.28)
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where the magnitude of the external magnetic field is directed along ẑ.

From this Zeeman Hamiltonian of non-interacting spins, we can begin to describe the

behavior of spins analogous to the classical motion as described by equation (2.6). The

quantummechanical description for the behavior of a spin state |ψ〉 is given by Schödinger’s
equation named after Erwin Schödinger.

i~
d

dt
|ψ〉 = H|ψ〉 (2.29)

In the general case, |ψ〉may represent the total spin state of allN spins in the system.

The solution to equation (2.29) for a constantH is an exponential

|ψ(t)〉 = e−
i
~Ht|ψ(0)〉 (2.30)

where |ψ(0)〉 is the initial state ket. For example, a single spin in an external magnetic field
~B = B0ẑ with initial state

|ψ(0)〉 = cos(θ0/2) |↑〉+ sin(θ0/2)eiφ0 |↓〉 (2.31)

will evolve as

|ψ(t)〉 = cos(θ0/2) |↑〉+ sin(θ0/2)ei(φ0−γB0t) |↓〉. (2.32)

If we define the angular frequency

ω0 = γB0 (2.33)

and plot the time-dependent expectation values 〈Ix(t)〉, 〈Iy(t)〉, and 〈Iz(t)〉 on the Bloch

Sphere, we observe the natural precession of the spin. Namely, the spin precesses with

angular frequency ω0, the Larmor frequency, in a cone tilted at angle θ0 with the z-axis.

Now we add the complication of interactions between spins. Generalizing equation

(2.28) for magnetic fields produced by individual magnetic dipole moments yields a gener-

alized coupling Hamiltonian

Hc = a12Iz1Iz2 + b12(Ix1Ix2 + Iy1Iy2). (2.34)

where coefficients a12 and b12 may contain many specific parameters about the orienta-

tions of the two spins and the external magnetic field B. For the special case where a12 is
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a constant and b12 = 0, the interaction is simply the tendency for the two spins to align or

anti-align in the z-direction.

Taken together, equations (2.28) and (2.34) should completely describe a closed system

of spins in a magnetic field. The transverse relaxation time, T2, can then be determined

by the interactions between the spins as we describe in Chapter 4. To calculate the spin-

lattice relaxation time T1, additional external parameters about the systems environment

are needed. ForN total spins, the full Hamiltonian operator is written as

H =
N∑

i=1

−γ~Izi
B +

N∑
j>i

aijIzi
Izj

+ bij(Ixi
Ixj

+ Iyi
Iyj

) (2.35)

where the subscripts i and j denote the individual spins. To solve for the behavior of many

spins at once, we use the density matrix.

2.4 The Density Matrix Representation

In this thesis, we wish to solve equation (2.29) for an ensemble of spins withmany different

initial states. The quantum mechanical ensemble is represented as the density matrix

ρ =
N∑

i=1

N∑
j=1

wij|ψi〉〈ψj| (2.36)

where wij is some complex weight factor, and |ψi〉 is the ith possible configuration for N

spins.

For example, in the z-basis withN = 2 spins, the density matrix is given by

ρ = w11 |↓↓〉〈↓↓| + w12 |↓↓〉〈↓↑| + w13 |↓↓〉〈↑↓| + w14 |↓↓〉〈↑↑|

+ w21 |↓↑〉〈↓↓| + w22 |↓↑〉〈↓↑| + w23 |↓↑〉〈↑↓| + w24 |↓↑〉〈↑↑|

+ w31 |↑↓〉〈↓↓| + w32 |↑↓〉〈↓↑| + w33 |↑↓〉〈↑↓| + w34 |↑↓〉〈↑↑|

+ w41 |↑↑〉〈↓↓| + w42 |↑↑〉〈↓↑| + w43 |↑↑〉〈↑↓| + w44 |↑↑〉〈↑↑| (2.37)

and can be written in mattrix form as

ρ =


w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

w41 w42 w43 w44

 . (2.38)
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As we will discuss further in Chapter 10, terms in different parts of the density matrix rep-

resent different quantum coherences of the total system. Special mechanisms will be dis-

cussed in Chapter 9 that connect different quantum coherences together to allow mixing in

the density matrix.

Using the density matrix, equation (2.29) may be rewritten to the quantummechanical

form of Liouville’s theorem, named after French mathematician Joseph Liouville,

i~
d

dt
ρ = [H, ρ] (2.39)

where the brackets denote the quantum mechanical commutator [74].

The solution of equation (2.39) for a constantH is the exponential equation

ρ(t) = e−
i
~Htρ(0)e+

i
~Ht (2.40)

analogous to equation (2.30).

The observable expectation values are derived from the density matrix as follows

〈Ix〉 = Tr[ρ(t)Ix] (2.41)

〈Iy〉 = Tr[ρ(t)Iy] (2.42)

〈Iz〉 = Tr[ρ(t)Iz] (2.43)

where Tr denotes the matrix trace. The matrix form of the spin angular momentum opera-

tors are generated using the identity operator in ket-bra notation. For example, the ith row,

jcolumn of the matrix form for Ix is given by

Ixij
= |ψi〉〈ψi|Ix|ψj〉〈ψj|. (2.44)

Lastly, an important bit of information is the non-communtability of each component

spin angular momentum operator.

[Ix, Iy] = iIz (2.45)

[Iy, Iz] = iIx (2.46)

[Iz, Ix] = iIy (2.47)

Non-commutability is an important aspect of quantum dynamics since the right side

of equation (2.39) would be zero if the Hamiltonian commuted with the density matrix at
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any point. In other words, if two operators do not commute, that is, there are no mutual

eigenstates of both operators, then the action of one will always affect the state of the other.

We find this to be the case for the operation of real pulses on interacting spins.

This chapter focused on the intuitive notion of spin precession as a method of spin con-

trol in NMR and gently introduced some general elements needed for the quantum de-

scription of an ensemble of spins. In later chapters these concepts are further developed for

use in theoretical calculations that describe the conventional expectations of instantaneous

pulses and even more calculations that introduce average Hamiltonian theory to describe

our experimental data.



Chapter 3

NMR Tools

Armed with the basics of NMR theory, it makes good sense to test those principles in the

real world. After all, nature surprises us the most when we find something different from

what we expect. Some specialized equipment is needed to ensure precision, accuracy, and

control.

3.1 A Superconducting Magnet

High resolution NMR requires the application of a strong external magnetic field that is

homogeneous to less than one part in a million over the volume of the spin system under

study. With such a homogeneous external magnetic field, the local field variations within a

spin system are easily resolved over a macroscopic sample volume. We achieved this high

quality magnetic field using a type II superconducting magnet.

The experiments described in this thesis were performed on an Oxford Instruments

Teslatron. Table 3.1 summarizes the attributes of the Teslatron superconducting magnet.

One special feature of a superconductingmagnet is the ability to operate in the persistent

currentmode. Because themagnet is superconducting, currentwill flowwith zero resistance

when the superconducting material is cooled below the critical temperature. In the case

of Nb3Sn, the critical temperature is well above the boiling point of liquid helium so that

conventional cryogens are used to cool the magnet.

In the persistent current mode, the magnetic field is extremely stable. The Oxford Tes-

latron has a maximum attainable field of 12.0 Tesla, which is approached in two stages.

Initially the target field is overshot by 0.017 Tesla and then slowly brought to the required

18



CHAPTER 3. NMR TOOLS 19

Attribute Value

Maximum Central Field 12.0 Tesla

Superconducting Material Nb3Sn wire

Field Stability < 0.1 ppm/hr

Operating Current 109.4 Amps at 12 Tesla

Inductance 84.9 Henries

Stored Energy 1.02 MegaJoules

Field Homogeneity < 0.2 ppm

High Homogeneity Volume 10 mm diameter sphere

Bore Diameter 88 mm

Helium Boil-off Rate <0.019 liters/hr

Helium Reservoir Volume 35 liters

Total Weight Empty 400 kg

Table 3.1: Oxford Instruments Teslatron Superconducting NMRMagnet
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field after a 20 minute wait period. This technique ensures a field drift of less that 0.1 parts

per million per hour.

Other target field values have been attainedwith theOxford Teslatron including 1 Tesla,

3 Tesla, and 7 Tesla. Each of these target field values are approached in a similar manner

prescribed above.

To ensure field homogeneity over a∼1 cm3 sample volume a process called “shimming”

was performed to cancel ∂
∂z
, ∂2

∂z2 , ∂
∂x
, ∂

∂y
, ∂2

∂x∂y
, ∂2

∂x2 , and ∂2

∂y2 field gradients using the pre-

installed superconducting shim coils in the Oxford Teslatron. First, spatial mapping of the

magnetic field was done using the deuterium NMR signal from a ∼1 mm3 droplet of D2O

in a specially designed probe. Then the six superconducting shim coils were calibrated by

measuring the contribution to the total magnetic field due to a given current through each

coil. Finally, the appropriate current for each shim coil was calculated and applied so that the

corresponding spatial derivative would be cancelled. This procedure allowed us to achieve

a ∼0.2 ppm magnetic field homogeneity over a ∼1 cm3 sample volume at the center of the

field.

3.2 Circuitry of Spectroscopy

The general schematic outline for heterodyne spectroscopic NMR detection is given in Fig-

ure 3.2. The basic idea is to apply a square pulse of oscillating magnetic fields at the Larmor

precession frequency of the particular nucleus under study. Then detection is achieved by

measuring the induced electro-motive force by the total magnetic moment of the nuclei in

the sample.

Both the creation of the perturbing pulse and the detection begin with a continuous

wave carrier source dialed to the Larmor precession frequency of the nucleus of interest.

This carrier source is “split” into two identical transmission lines, one line used to create

the pulse, and the other used for detection.

To create the proper pulse, this oscillating voltage source is first attenuatedwith a digital

attenuator that controls the height of the pulse. Next, the source is electronically gated close

to a square pulse with a controllable time duration. The gated oscillating pulse is then fed

into a power amplifier and then a series of crossed diodes to protect the amplifier from
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Figure 3.1: A schematic of the NMR electronics for heterodyne detection.
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reflected voltage. Finally, the pulse is transmitted to the NMR tank circuit.

Immediately after the pulse is applied, detection is possible via a quarter-wavelength

(λ/4) transmission line coupled to the tank circuit. The λ/4 cable acts as an impedance

transformer about the characteristic circuit impedance of 50 Ohms. In other words, the

high voltage of the pulse at the carrier frequency exhibits a peak voltage at the side of the

tank circuit but a tiny voltage at the opposite end of the λ/4 cable. Thus, the high voltage

pulse is applied to the tank circuit and not to the detection circuit while the small voltage

signal induced by the sample is received predominately by the detection circuit.

Crossed diodes to ground is another protection element after the λ/4 cable. The pre-

amplifier then amplifies the signal before proceeding to another splitter that creates a pair

of duplicate signal lines. One signal line is mixed with the original carrier source. We com-

monly refer to this signal line as the “real channel”. The other signal line is mixed with a

90◦ phase shifted copy of the original carrier source. This second signal line is commonly

referred to as the “imaginary channel”.

The actual output of the circuit mixers is the product of the two input sources. Since the

original carrier source and the NMR signal are both oscillating signals, the product takes

the form of the sum and difference of the two frequencies. For example, assume that the

carrier has a frequency ωa while the NMR signal has a frequency ωb, then the mixer outputs

cos(ωat)⊗ cos(ωbt) → cos(ωat) cos(ωbt) = cos((ωa − ωb)t) + cos((ωa + ωb)t) (3.1)

If the original carrier source ωa is set close to the natural Larmor precession frequency ωb

then ωa − ωb ≈ 0 while ωa + ωb ≈ 2ω0. By sending both the real and imaginary channels

though a digital low-pass filter, we focus on detecting the difference signal. The act of

subtracting out the carrier source is same as transforming to the rotating reference frame.

Two NMR tank circuit designs are depicted in Figure 3.2. The choice of circuit to use

depends on the desired resonance frequency. Both circuit designs feature two tunable ca-

pacitors with variable capacitances CT for the tuning capacitor and CM for the matching

capacitor. These two capacitors are used to tune the NMR tank circuit to the desired reso-

nance frequency while maintaining the total impedance of the circuit at 50 Ohms.
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Figure 3.2: Two NMR tank circuit designs for low frequency (< 50 MHz) resonance and
high frequency (> 50MHz) resonance. The NMR sample is inserted inside the copper coil
with inductance L. The typical range of values is 10 ∼ 100 micro-Henries for L, 1 ∼ 300
pico-Farads for CM and CT , 1 ∼ 5 Ohms for r, and 10 ∼ 200 MHz for the resonance
frequency. The tank circuit impedance is usually matched at 50 Ohms.
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3.3 The Pulse

TheNMRapparatus allows five basic controls tomanipulate the nuclear spins in the sample.

All of these controls are focused on the application of radio frequency (rf) pulses to the tank

circuit, which are absorbed into the sample. The controls are pulse strength, pulse duration,

pulse frequency, pulse phase, and the delay between pulses.

For nuclear magnetic spins, the important feature of an rf pulse is the oscillating mag-

netic field. Nuclear spins naturally precess about the fixed z-magnetic field supplied by the

superconductingmagnet but always in one sense of rotation. An rf pulse tuned at the proper

Larmor precession frequency of the nuclei and applied to theNMR coil can be considered as

two counter-rotatingmagnetic fields, which sum to give the simple linearly-polarized oscil-

latory field produced by the inductor L. One of these rotating magnetic fields rotates in the

same sense as the nuclei in the sample and can be considered static in that rotating frame.

The other rotating magnetic field rotates at twice the Larmor frequency when seen by the

nuclei in their rotating frame. The rotating wave approximation discards this fast rotating

field by noting that the time average field in the rotating frame of the nuclei is zero.

In the rotating frame of the nuclei, the spins will precess about this new magnetic field

produced by the pulse just as it would precess about any other magnetic field. The pulse

strength then determines how fast the spins will precess (i.e. the Rabi frequency ω1) while

the pulse duration determines how long the spins will continue to precess. Together, these

two parameters determine the overall angle that the nuclear spins have changed during the

action of the pulse.

Since theNMR coil is typically perpendicular to the fixed z-field of the superconducting

magnet, the magnetic field generated from the rf pulses is constrained to the transverse

plane. This is not a limitation if the phase of the rf pulse can be controlled. By controlling

the phase, the pulses can be applied along the x-axis, the y-axis, or any angle φ away from

the x-axis. Conventionally, pulses along x̂ and ŷ are sufficient to manipulate the nuclear

spins to any orientation in the Bloch sphere (see Chapter 2).

Finally, the delay between pulses controls the timing when spins align with each other.

When spins are aligned, this creates the biggest NMR signal because the precession of the

total magnetic moment of the sample induces a voltage in the NMR coil. A spin echo occurs
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when the spins align at a specified delay after a pulse.

3.4 The Fourier Transform

Perhaps the most important tool in high resolution NMR is the Fourier Transform named

after French mathematician Baron Jean Baptiste Joseph Fourier. This unique tool allows

the transformation of an observed free induction decay in the time domain to a spectrum in

the frequency domain [4].

The fundamental principle of the Fourier Transform is the idea that any curve with

domain [t1, t2] may be written as an infinite series of sine and cosine functions

f(t) =
1

2
a0 +

∞∑
n=1

an cos(ωnt) + bn sin(ωnt) (3.2)

where ωn = n2π
T

is the nth harmonic of the function f(t) with period T . The Fourier

coefficients are given by

an =
2

T

∫ t2

t1

f(t) cos(ωnt)dt (3.3)

bn =
2

T

∫ t2

t1

f(t) sin(ωnt)dt. (3.4)

From the Fourier Series, we obtain the complex Fourier Transform between the time

domain and the frequency domain

f(t) =
1√
2π

∫ +∞

−∞
F (ω′)eiω′tdω′ (3.5)

F (ω) =
1√
2π

∫ +∞

−∞
f(t′)e−iωt′dt′. (3.6)

In practice, the digitized signals are processed with an efficient algorithm called the Fast

Fourier Transfrom (FFT) that computes the discrete Fourier Transform from of an array of

complex numbers. The “real” and “imaginary” parts of f(t) are produced by the phase-

sensative detection used in Figure 3.1.

Figure 3.3 shows an example of the FFT from a real time resolved signal of a decaying

voltage received in the NMR coil to a well-defined spectrum in frequency.
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Figure 3.3: An example of the Fourier Transform applied to a free induction decay signal
in time. At time t = 0 a 90X pulse is applied in the rotating frame to the spin system
in equilibrium. Since the NMR coil is perpendicular to the external field, it measures a
decaying oscillatory voltage in the transverse direction induced by the precessing magnetic
moment of the sample. Once the the carrier frequency is mixed away, the resulting NMR
signal looks like the top graph. The red trace is the in-phase component (in this case, along
the y-axis in the rotating frame), while the green trace is the out-of-phase component (in
this case, along the−x-axis). The Fourier transform is applied and the characteristic shape
of the spectrum in frequency is obtained in the bottom graph.



Chapter 4

Quantum Coherence Measurements

The turn of the twenty-first century saw a new branch of physics called Quantum Infor-

mation Processing (QIP) gaining incredible momentum. At the heart of the study is the

promise to build a device known as a quantum computer that would exploit the features of

quantum mechanics in algorithms that are thought to compute the impossible [15].

Much fundamental work is needed to establish the feasibility of such a device. One

important study is determining how long potential qubits can maintain a special kind of

stability known as quantum coherence. For practical purposes, the quantum coherence time

constrains the amount of time in which a quantum algorithm may be performed. In order

to discuss this aspect further, wemust make the connection between quantum computation

and nuclear magnetic resonance.

4.1 Solid State Qubits

In the simplest definition a qubit is a quantum bit. Much like the classical notion of a com-

putational bit, a qubit takes on one of only two possible states when measured. In analogy

to spin states we shall make the assignment that the “0” state corresponds to the spin down

state |↓〉 while the “1” state corresponds to the spin up state |↑〉.
A qubit has a special property in addition to the two measured states. This property is

known as the superposition principle where the state of a qubit may actually be in a linear

combination of both the spin down state and the spin up state

|ψ〉 = a |↓〉+ b |↑〉 (4.1)

27
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where |a|2+|b|2 = 1. Furthermore, uponmeasuring the state of the qubit, the only possible

outcomes are spin down with probability |a|2 or spin up with probability |b|2. This “col-
lapse” of the state |ψ〉 to a probabilistic outcome is perhaps one of the most philosophically

difficult concepts to interpret. Nevertheless, this representation gives the correct physical

description.

Another property known as entanglement is thought to be important for the develop-

ment of a quantum computer. Two spins are entangled when their total state ket cannot

be represented as a product state of the two individual spins. For example, the two-spin

singlet state is given by

|ψs〉 =
1√
2
(|↓↑〉− |↑↓〉) (4.2)

where the arrow on the left represents the state of the first spin while the arrow on the right

represents the state of the second spin.

The two spins in the singlet state are considered entangled since the measurement of

only the first spin uniquely determines the state of the second spin and vice versa. The

measurement of each spin will yield either spin up or spin down with equal probability, but

there is a perfect anti-correlation between the two spins.

It makes sense, maybe in an anthropomorphic way, that entanglement is only possible

if the two qubits have shared an interaction (either direct or indirect) in at least one point

in their history. To further the analogy with spins, the interaction between two magnetic

dipole moments can serve to establish such an entanglement.

Many other entanglement schemes are possible between two quantum objects such as

electrons in quantum Hall effect materials, electrons in quantum dots, electrons in the su-

perconducting state, an array of trapped atoms, or nuclear spins in semiconductors. An

important attribute that determines feasibility of any of these schemes is the scalability of

the qubit system. For this reason, solid state qubits have been at the forefront of many QIP

studies.

4.2 Measuring theTransverseRelaxationTime inTwoWays

The quantum coherence time gives the length of time that the state of a qubit will evolve as

expected. As an analogy, we may think of the state of a qubit as the hour-hand on a clock.
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Then if we start the clock at 1:00 and come back 2 hours later, we should expect to observe

that the hour-hand has advanced to 3:00. If the time iswrong or if the hour-hand ismissing,

then the coherence time has been exceeded.

In the nuclear spin system, an important mechanism that contributes to the coherence

time is the interaction between spins. Thus, the transverse relaxation time, or T2, is an

accepted measure of coherence time in NMR.

We initially set out to measure the transverse spin relaxation time T2 for both 31P and
29Si in silicon [3, 24, 40, 78, 82] doped with phosphorous, motivated by proposals to use

spins in semiconductors for quantum computation [15, 34, 35, 38, 65, 94]. In doing so, we

discovered a startling discrepancy between two standard methods of measuring T2 using

the NMR spin echo [79].

The first method is the Hahn echo (HE), where a single π pulse is used to partially

refocus magnetization [29].

HE : 90X−τ−180Y −τ−echo

The pulses are represented as their intended rotation angle with their phase as subscripts.

For this sequence, each Hahn echo [Figure 4.1(green dots)] is generated with a different

time delay τ .

The second method is the Carr-Purcell-Meiboom-Gill (CPMG) echo train [9, 58]

CPMG : 90X−τ−{180Y −τ−echo−τ}n

where the block in brackets is repeatedn times for thenth echo. Note that CPMG is identical

to HE for n = 1. In contrast to the series of Hahn echo experiments, the CPMG echo train

[Figure 4.1(red lines)] should give T2 in a single experiment.

As Figure 4.1 shows, theT2 inferred from the echo decay is strikingly different depending

on how it is measured. Admittedly, two different experiments that give two different results

is not uncommon in NMR. In fact, in liquid state NMR, the CPMG echo train is expected

to persist after the Hahn echoes have decayed to zero. In the liquid state, spins can diffuse

to different locations in a static inhomogeneous magnetic field [9, 22, 79]. This diffusion

leads to a time-dependent fluctuation in the local field for individual spins, which spoils the

echo formation at long τ . By rapidly pulsing a liquid spin system, it is possible to render
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Figure 4.1: Two NMR experiments to measure T2 of 29Si in a crushed powder of Silicon
doped with Phosphorous (3.94× 1019 P/cm3). Hahn echo peaks (dots) are generated with
a single π pulse. The CPMG echo train (lines) is generated with multiple π pulses spaced
with delay 2τ = 592 µs. Normalization is set by the initial magnetization after the 90X

pulse. Data taken at room temperature in a 12 Tesla field.
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these diffusive dynamics quasi-static. In this case, the coherence from one echo to the next

is maintained by resetting the start of the precession at each echo. As a consequence, the

CPMG echo train can, under ideal circumstances, approach the natural diffusion-free T2

limit. In contrast, the Hahn echo experiment with only one refocussing pulse can decay

faster due to diffusion. However, in the solids studied here, the lack of diffusion makes

the local field time-independent so the Hahn echoes and CPMG echo train are expected to

agree, at least for delta-function π pulses.

The expected behavior of the CPMG sequence can be modeled using the density matrix

ρ(t), which represents the full quantum state of the system [18, 79]. The time-evolution of

the density matrix is expressed as

ρ(t) = {VPV}n ρ(0)
{
V−1P−1V−1

}n
, (4.3)

where n is the number of π pulses applied. The total evolution time t = n × (2τ + tp)

depends on τ , the duration of the free evolution period under V , and tp, the duration of the
pulse period under P . The form of the unitary operators P and V are not yet specified, so

while equation (4.3) is complete, it is not yet very useful. We return to equation (4.3) as a

model for our calculations in Chapters 5 and 8.

In the next sections of this chapter, we present additional NMRdata [46], which further

defy the conventional expectations that strong pulses should act like delta-function pules.

4.3 Other Strange Results with Multiple Pulses

Before calculating what we mean precisely by the expectations of delta-function π pulses,

we present a series of NMR measurements that are surprising even for simple intuitive

expectations. These NMR experiments try to illuminate different facets of the results from

Figure 4.1.

Our first reaction to the long-tail in theCPMGecho trainwas to assume that theπ pulses

were somehow locking the magnetization along our measurement axis [52, 53, 54, 62, 72, 73,

83]. Increasing the time delay τ between π pulses reduces the pulse duty cycle down to

less than 0.04% but the NMR signal still did not exhibit the expected behavior. Figure

4.2 shows three CPMG echo trains with three different interpulse time delays. For short
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delays between π pulses, the CPMG echo train exhibits a long tail [Figure 4.2(top)]. For

intermediate delays, some slightmodulation develops in the echo envelope [Figure 4.2(mid-

dle)]. For much longer delays, we observe an even-odd effect where even-numbered echoes

are much larger than odd-numbered echoes that occur earlier in time [45, 14, 21] [Figure

4.2(bottom)].

The slight modulation of the echo envelope for the middle graph of Figure 4.2 is more

visible when we perform the same CPMG experiment on a Silicon sample with a lower

doping. Figure 4.3 shows CPMG echo trains in Si:P (3×1013 P/cm3) and Si:B (1.43×1016

B/cm3). Here, the echo shape is much wider in time than for the higher doped Si:P (1019

P/cm3) sample because the Zeeman spread is much smaller. The heights of the echoes in

Figure 4.3 modulate in a seemingly noisy way. However, when sampling short segments

of echoes, an unusual fingerprint pattern emerges repeatedly throughout the echo train.

Sections of the echo train are highlighted and overlapped to help guide the eye. Figures 4.2

and 4.3 are evidence of complicated coherent effects.

From the analysis of Chapter 4, the calculated envelope |〈Iy1(t)〉| is expected to be in-

sensitive to the π pulse phase. We define the following four pulse sequences

CP : 90X−τ−{180X−2τ−180X−2τ}n

APCP : 90X−τ−{180X̄−2τ−180X−2τ}n

CPMG : 90X−τ−{180Y −2τ−180Y −2τ}n

APCPMG : 90X−τ−{180Ȳ −2τ−180Y −2τ}n

where X̄ indicates rotation about−x̂ and Ȳ indicates rotation about−ŷ. The Carr-Purcell
(CP) sequence [9] features π pulses along x̂, the CPMG sequence [58] features π pulses

along ŷ, and the alternating phase (AP-) versions flip the phase after each π pulse. The

spin echoes form in the middle of each 2τ time period. For CP and APCP, the spin echoes

form alternatingly along ŷ and −ŷ, while in CPMG and APCPMG they form only along

ŷ. Though all of these sequences are expected to decay with the same envelope, they differ

drastically in experiment (Figure 4.4). The CP sequence decays extremely fast, while the

APCP and CPMG sequences have extremely long-lived coherence. The pulse sequence sen-

sitivity exhibited in Figure 4.4 demonstrates that the π pulses play a key role in the system’s

response.
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Figure 4.2: CPMG echo trains of 29Si in Si:P (3.94 × 1019 P/cm3) with three time delays
between π pulses. (Top) 2τ = 592 µs. (Middle) 2τ = 2.192 ms. (Bottom) 2τ = 9.92 ms.
For comparison, T2 = 5.6 ms in silicon as measured by the Hahn echoes and as predicted
by the delta-function pulse approximation. Data taken at room temperature in a 12 Tesla
field.
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Figure 4.3: Repeated fingerprint patterns in the CPMG echo train with 2τ = 2.192 ms.
Two different samples are shown: (top) Si:B (1.43 × 1016 B/cm3), and (bottom) Si:P
(3× 1013 P/cm3). Data taken at room temperature in a 7 Tesla field.
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Figure 4.4: Four pulse sequences with π pulses of different phases applied to 29Si in Si:Sb
(2.75× 1017 Sb/cm3). (Top Left) CP, (Top Right) CPMG, (Bottom Left) APCP, (Bottom
Right) APCPMG. All are expected to yield identical decay curves. 2τ = 72 µs, T = 300 K,
and Bext = 11.74 Tesla.
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4.4 The Anomalous Stimulated Echo

The peculiarities of the even-odd effect at the bottom of Figure 4.2 led us to pursue the

degree to which the even echoes were larger than odd echoes that came earlier in time.

Figure 4.5 shows the first two echoes in the CPMG echo train for extremely long delays

between π pulses. Since T2HE
≈ 5.6 ms as measured by Hahn echoes in silicon, it is not

surprising that the first echo (SE1) has such a small amplitude. However, the second echo

(SE2) is substantially larger, simply because it occurs after two π pulses instead of only one.

After doubling the delay between π pulses, SE1 is lost in the noise even though it is supposed

to appear at the same absolute time as the SE2 from the above graph. Though SE1 is absent,

SE2 is clearly visible, which begs the question of the echo’s source.

This extreme version of the even-odd effect requires only three pulses: the initial 90X

pulse, and two 180Y pulses. In literature searches for special NMR experiments involving

only three pulses, we stumbled upon the stimulated echo [7].

The standard form of the stimulated echo consists of three 90 degree pulses. Figure

4.6 outlines the standard placement of the pulses in the stimulated echo sequence. It is

important to note that the timing between the first and second pulse is TE/2 while the

timing between the second and third pulse is TM. In general, TM 6=TE.

The formation of the standard stimulated echo requires the action of all three pulses.

Using the Bloch Sphere with non-interacting spins, we can demonstrate how the pulses

bring about the stimulated echo at the proper time.

In equilibrium the spins have a net magnetization aligned with the external magnetic

field Bext parallel to ẑ [Figure 4.6(a)].

After the first pulse, 90X , the spins are brought into the xy-plane and begin to precess

in the presence of the external magnetic field. Different spins experience slightly different

local magnetic fields Bloc due differences in their local environments, such as impurities.

Therefore, each spin i precesses at a slightly different resonance frequency ω0i
= γ(Bext +

Bloc
i ). Because of the different frequencies present, the spins develop a phase shift between

one another, fanning out in the xy-plane. The resultant magnetization thus decays [Figure

4.6(b)] with time constant T ?
2 . This decay is known as the free induction decay (FID) since

it is observed as an oscillating voltage.



CHAPTER 4. QUANTUM COHERENCE MEASUREMENTS 37

800

400

0
706050403020100

Time (msec)

(a)

800

400

0
140120100806040200

Time (msec)

(b)

200

0
313029 616059

121120119

100

0
616059

SE1

SE1

SE2

SE2

N
M

R
 S

ig
n
a
l 
(a

rb
. 
u
n
it
s
)

Figure 4.5: The first two echos in a CPMG echo train in silicon doped with phosphorous
(Si:P, 1019 P/cm3). (Top) a time delay of 30 ms between π pulses shows a very small peak
for the first echo as is expected since T2HE

≈ 5.6ms. The second echo appears larger even
though it occurs at 60 ms. (Bottom) Most surprising, when the delay between π pulses
is doubled, the first echo is lost in the noise, while the second echo appears. For compar-
ison, the height of the initial polarization is 14,600 on the same scale. Data taken at room
temperature in a 7 Tesla field.
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The second pulse, 90Y , is applied some time after the initial decay. The delay between

the first two pulses is defined as TE/2. Another delay of TE/2 after the second pulse gives

the timing for the 90-90 SE1 illustrated as a three dimensional figure-8 on the Bloch Sphere

[Figure 4.6(c)].

The third pulse, another 90Y , is applied a delay of TM>TE after the second pulse.

Though the location of the spins is more complicated on the Bloch Sphere [Figure 4.6(d)]

the fixed precession of the individual spins results in four echoes. The first echo in time is

the stimulated echo [Figure 4.6(e)], followed by the 90-90 SE2, and two additional 90-

90 echoes caused by the second and third pulses, or the first and third pulses in respective

order.

An important feature of the standard stimulated echo is that it requires all three pulses

to form, unlike the other generated echoes. An easier way to understand how the stimulated

echo forms is to consider just two spins. The first pulse, 90X , puts the two spins into the

xy-plane. After an ideal amount of time, the spins have precessed from the y-axis to the

x-axis with one spin parallel to +x̂ and the other parallel to −x̂. The second pulse, 90Y ,

moves these two spins to the ±z-axis where they stop precessing and are protected from

most decay mechanisms. The final pulse, 90y, brings these spins back down to the±x-axis
where they require the same amount of time to refocus as the delay between the first and

second pulses. Consequently, the stimulated echo should be independent of TM.

We performed the standard 90-90-90 stimulated echo sequence in Si:P (1019 P/cm3) to

see if the unexpected results from the multiple π pulse experiments carried over. Figure 4.7

shows that the standard stimulated echo data agreed with conventional expectations. The

data decay at the same rate as the 90-90 SE1 and the 90-90 SE2. Additionally, since there is

a required lag time for spins to reach the ±x-axis, after the first pulse, we expect a smaller

stimulated echo for shorter TE/2 delays. Experiments using 90 degree pulses therefore have

fulfilled our expectations.

Energized with the fresh confidence from these results, we extended the three pulse

stimulated echo sequence to include π pulses. The sequence

90X − TE/2− 90Y − TM− 90Y
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Figure 4.6: The stimulated echo sequence [7] with all 90 degree pulses can be understood
using the Bloch Spherewith non-interacting spins. (a) the spins start at equilibrium aligned
along ẑ, (b) after the first 90X pulse, the spins fan out in the xy-plane because of slightly
different local Zeeman energies, (c) at time TE/2 after the second pulse (the first 90y) the
figure-8 echo forms, (d) at time TM after the first 90y pulse, a second 90y pulse (third
overall pulse) is applied, (e) the stimulated echo forms at a time TM-TE separated from
the usual spin echo number 2 (SE2).



CHAPTER 4. QUANTUM COHERENCE MEASUREMENTS 40

(a) (b)

Figure 4.7: 90-90-90 stimulated echo data in silicon doped with phosphorous. These stim-
ulated echoes decay with the same decay time as SE1 and SE2 as expected. (a) As the spins
fan out in the Bloch Sphere, the second 90 degree pulse moves spins aligned along the x-
axis to the z-axis. Spins along the z-axis are subsequently protected from decay during the
TM time period. (b) Because spins take time to fan out to the x-axis, the stimulated echo
is expected to grow from zero for short TE times.
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Figure 4.8: Analogous to the standard 90-90-90 stimulated echo, we found a 90-180-
180 stimulated echo with anomalous characteristics. These series of figures show that the
anomalous stimulated echo produced with π pulses does not decay with the same time con-
stant as SE1 or SE2, in contrast to the standard stimulated echo.
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was converted to

90X − TE/2− 180Y − TM− 180Y ,

which is only a slight variation from the CPMG sequence in that TE is extended to TM after

the second pulse.

Figure 4.8 shows three NMR experiments using the modified stimulated echo sequence

with π pulses. An echo appears at the proper time analogous to the stimulated echo, which

we refer to as the anomalous stimulated echo (STEa). Strangely, as the delay time TE is

increased, both SE1 and SE2 decay as expected, while STEa appears relatively constant in

amplitude.

Figure 4.9 plots a series of STEa data together in Si:P (1019 P/cm3). Aside from appear-

ing at the analogous time, the STEa does not behave like the standard stimulated echo.

The STEa answers one concern that the pulses we apply are not the proper angle that we

desire. In other words, a maladjusted π pulse could actually be a π/2 pulse, in which case

the STEa is simply the standard stimulated echo. However, Figure 4.9 is starkly different

from Figure 4.7. The STEa does not decay similarly to SE1 or SE2, nor does it grow from

zero for small TE. Furthermore, the scatter in the STEa amplitudes is abnormally high given

the signal to noise ratio [14].

Though the anomalous stimulated echo certainly stimulated an enormous amount of

theoretical and experimental work in our lab, it inevitably did not lead to a better under-

standing of the underlying cause of the phenomena of Figure 4.1. Other attemptsweremade

such as a four pulse sequence in the hopes of understanding the source of echoes generated

similarly to the STEa. Additionally, in one experiment we even tried to progressively in-

crease the delay between all successive π pulses in the CPMG echo train to see how many

STEa like coherences would be observed. While many of these explorations are interesting

on their own right, they lead us astray from the main puzzling discrepancy between the

Hahn echo and the CPMG echo train.

In order to find a foothold on the physical principles at the root of these experiments,

we temporarily halt our experimental explorations to calculate what we mean by the con-

ventional expectations of instantaneous pulses.
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Figure 4.9: A collection of anomalous stimulated echo data in silicon doped with phospho-
rous shows a non-decaying signal and surprisingly large fluctuations in amplitude. (Inset)
The stimulated echo does not appear to grow from zero at early times. Data taken at room
temperature in a 7 Telsa field. Filled squares (TE≈ 0.4 ms) are plotted versus TE+TM.
Empty circules (TM≈ 10ms) and triangles (TM≈ 21ms) are plotted versus TE. The solid
line is calculated Ising model decay.



Chapter 5

Expected Results for Instantaneous π
Pulses

In this chapter, we calculate the expected behavior ofN spin-1/2 particles under the action

of pairwise dipolar coupling and instantaneous π pulses to compare with the experimental

results of Figure 4.1.

5.1 The Internal Spin Hamiltonian

In order to calculate the expected behavior, we first write the relevant internal Hamiltonian

for the system. The ideal Hamiltonian for a solid containingN spin-1/2 nuclei in an external

magnetic field contains two parts [1, 55, 79]. In the lab frame, the Zeeman Hamiltonian

HLab
Z =

N∑
j=1

−γ~(Bext + ∆Bloc
j )Izj

(5.1)

describes the interactionwith the applied and localmagnetic fields, while the dipolarHamil-

tonian

HLab
d =

N∑
j=1

N∑
k>j

[
~µj · ~µk

|~rjk|3
− 3(~µj · ~rjk)(~µk · ~rjk)

|~rjk|5

]
(5.2)

describes the interaction between two spins. In these Hamiltonians, γ is the gyromagnetic

ratio and Bext is an external magnetic field applied along ẑ. For spin j, ∆Bloc
j is the local

magnetic field, ~µj = γ~~Ij is the magnetic moment, and ~Ij = (Ixj
, Iyj

, Izj
) is the spin

angular momentum vector operator. The position vector between spins j and k is ~rjk.

44
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(a) (b)

(c) (d)

Figure 5.1: Bloch sphere depiction of signal decay due to a spread of Zeeman shifts. An
external magnetic field is aligned along ẑ. (a) Spins in equilibriumwith total magnetization
represented by a large pink arrow. (b) After a 90X pulse, the spins are aligned along ŷ in
the rotating frame. (c) Spins with different Zeeman shifts precess at different rates and
fan apart. Red arrows represent spins with a positive Zeeman shift (Ωz > 0), blue arrows
represent spins with a negative Zeeman shift (Ωz < 0), and black arrows represent spins
on resonance (Ωz = 0). (d) After some time, the total magnetization decays to zero.
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We proceed to the rotating reference frame [1, 55, 79] defined by the Larmor precession

frequency ω0 = γBext. The Zeeman term largely vanishes leaving only a small Zeeman

shift due to spatial magnetic inhomogeneities. The Zeeman shift for spin j is defined as

Ωzj
= −~γ∆Bloc

j . The scale of the spread of Zeeman shifts depends on the sample. For

highly disordered samples, or samples with magnetic impurities, Ωzj
varies wildly between

adjacent spins. The samples studied in this paper are much more homogeneous, so Ωzj
is

essentially the same for a large number of neighboring spins. We therefore drop the index

j giving the Zeeman Hamiltonian in the rotating frame

HZ =
N∑

j=1

ΩzIzj
= ΩzIzT

(5.3)

where IzT
=

∑N
j=1 Izj

is the total Iz spin operator. Experiments that justify this assumption

are presented in Chapter 6.

Even in the absence of the dipolar interaction, Zeeman shifts from different parts of the

sample can cause signal decay as shown in the Bloch sphere representation in Figure 5.1.

Each colored arrow represents a group of spins that experience a different ∆Bloc resulting

in a slightly different precession frequencyΩz/~ in the rotating frame. The initial magneti-

zation at equilibrium starts aligned along the z-axis [Figure 5.1(a)]. After a 90X pulse, the

spins are tipped along the y-axis [Figure 5.1(b)]. Because of the spread of Zeeman shifts,

spins in the rotating frame will begin to drift apart [Figure 5.1(c)]. The resultant magneti-

zation, or vector sum, will consequently decay [Figure 5.1(d)]. This process is referred to

as the free induction decay (FID) since it is detected in the NMR apparatus as a decaying

oscillatory voltage arising from magnetic induction in the detection coil [47, 79, 11].

Even without a spread of Zeeman shifts across the sample, transverse magnetization

will decay due to the dipolar coupling. It is appropriate to treat the dipolar Hamiltonian as

a small perturbation [79] since the external magnetic field is typically four to five orders of

magnitude larger than the field due to a nuclear moment. In this case, the secular dipolar

Hamiltonian in the rotating frame is

Hzz =
N∑

j=1

N∑
k>j

Bjk(3Izj
Izk

− ~Ij · ~Ik) (5.4)
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where the terms dropped from equation (5.2) are non-secular in the rotating frame. We

define the dipolar coupling constant as

Bjk ≡
1

2

γ2~2

|~rjk|3
(1− 3 cos2 θjk) (5.5)

where θjk is the angle between ~rjk and ~Bext.

Thus, the relevant total internal spin Hamiltonian is

Hint = HZ +Hzz (5.6)

where we note that HZ commutes with Hzz. From this Hamiltonian, the free-evolution

operator is defined as

U ≡ e−
i
~Hintτ = e−

i
~HZτe−

i
~Hzzτ ≡ UZUzz (5.7)

where UZ and Uzz also commute.

5.2 Simplifying the External Pulse

During the pulses, another time-evolution operator is needed. This pulse time-evolution

operator is complicated since it contains all the terms in the free evolution plus an additional

term associated with the rf pulse.

Pφ = exp

(
− i

~
(HZ +Hzz +HPφ

)tp

)
(5.8)

where

HPφ
= −~ω1IφT

(5.9)

for a radio frequency pulse with angular frequency ω1 and transverse phase φ. In practice,

the pulse strength and phase could vary from spin to spin. Studies of the effects of this type

of rf inhomogeneity are reported in Chapter 5, but this approximate calculation considers

the homogeneous case.

Note thatHPφ
, in general, does not commute withHint = HZ +Hzz. Because of this

inherent complication, it is advantageous to make ω1 large so thatHPφ
dominates Pφ. This

strong-pulse limit is achieved when ω1 � Ωz/~ and ω1 � Bjk/~. This paper is primarily
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concerned with π pulses, which sets the pulse duration tp so that ω1tp = π. The delta-

function pulse approximation [1, 18, 22, 28, 55, 79] takes the limit ω1 → ∞ and tp → 0 so

that Pφ simplifies to a pure left-handed π rotation

Rφ = exp
(
iπIφT

)
. (5.10)

For these delta-function π pulses, the linear Zeeman Hamiltonian is perfectly inverted,

while the bilinear dipolar Hamiltonian remains unchanged. The time-evolution operators

thus transform as

RφUZR−1
φ = U−1

Z (5.11)

RφUzzR−1
φ = Uzz. (5.12)

In other words, after a π pulse, the Zeeman spread will refocus, while the dynamics due to

dipolar coupling will continue to evolve as if the π pulse was never applied. Equation (5.12)

is the basis for the statement: “π pulses do not refocus the dipolar coupling”.

5.3 An Analytic Expression for the Evolution of the Density
Matrix with Instantaneous Pulses

Using the free-evolution operator and the delta-function pulse, equation (4.3) for CPMG

simplifies to

ρ(t) = {URyU}n ρ(0)
{
U−1R−1

y U−1
}n

=
{
URy(R−1

y Ry)U(R−1
y Ry)

}n
ρ(0){inv}n

=
{
UzzUZU−1

Z UzzRy

}n
ρ(0){inv}n

= (Uzz)
2n(Ry)

nρ(0)(R−1
y )n(U−1

zz )2n

= (Uzz)
2nρ(0)(U−1

zz )2n

= Uzz(t)ρ(0)U−1
zz (t). (5.13)

where {inv} is the inverse of the operators in brackets to the left of ρ(0), the dipolar time-

evolution operator for time t isUzz(t) = exp(− i
~Hzzt), andwe assumed (Ry)

nρ(0)(R−1
y )n =

ρ(0) = IyT
. Invoking equations (5.7), (5.11), and (5.12) has allowed the cancellation of UZ .
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By assuming that the pulses are instantaneous, the density matrix at the time of an echo

is independent of the Zeeman spread and the number of applied pulses. In other words, the

peaks of the Hahn echoes and the CPMG echo train should follow the same decay envelope

given by the dipolar-only (Ωz = 0) FID.

5.4 General Method to Calculate the Observable NMR Sig-
nal

The last step is to calculate the measured quantity that is relevant to our NMR experiments.

The NMR signal is proportional to the transverse magnetization in the rotating reference

frame [1, 18, 22, 28, 55, 79]. Therefore, we wish to calculate

〈IyT
(t)〉 =

N∑
j=1

Tr{ρ(t)Iyj
}. (5.14)

The real experiment involves amacroscopic number of spinsN but computer limitations

force us to use only small clusters of coupled spins. Since the size of the densitymatrix grows

as 2N × 2N we are limited toN < 10.

To mimic a macroscopic system with only a small cluster of spins, we first built a lat-

tice with the appropriate unit cell for the solid under study. Then we randomly populated

the lattice with spins according the natural abundance. For one spin at the origin, N − 1

additional spins were chosen with the strongest coupling |B1k| to the central spin. Finally,
we disorder-averaged over many random lattice populations to sample different regions of

a large crystal. For powder samples, we also disorder-averaged over random orientations

of the lattice with respect to ~Bext. This method is biased to make the central spin’s local

environment as realistic as possible since the dipole coupling falls off as 1/r3. We therefore

chose to calculate 〈Iy1(t)〉 instead of 〈IyT
(t)〉 since spins along the border of the cluster only

interact with spins inside the cluster.

Using these clusters, the time dependence of the density matrix is calculated by starting

from its conventional Boltzmann equilibrium value

ρB = IzT
(5.15)
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assuming a strongBext and high temperature [55]. Treating a strong 90X pulse as a perfect

left-handed rotation about x̂, ρB transforms as

ρ(0) = R90X
ρBR−1

90X
= IyT

. (5.16)

From this point, equation (5.13) gives the evolution for ρ(t) in the limit of delta-function π

pulses:

ρ(t) = Uzz(t)IyT
U−1

zz (t). (5.17)

For each disorder realization (DR), the density matrix at time t + dt is calculated by

using the basis representation that diagonalizes the internal Hamiltonian. In this basis, the

density matrix is given by the matrix formula

ρmn(t+ dt) = ρmn(t)e−
i
~ (Em−En)dt (5.18)

where Em is the mth eigenvalue of Hzz, and ρmn is the element at the mth row and nth

column of the 2N × 2N density matrix [79]. Using the density matrix at each time t, the

expectation value 〈Iy1(t)〉 = Tr{ρ(t)Iy1} is calculated for each DR, and then averaged over

many DRs, yielding the expected decay for both CPMG and Hahn echoes [Figure 5.4(blue

curve)]. These calculations were originally done by Kenneth MacLean in a computer pro-

gram he wrote in Igor Pro. I subsequently verified the results independently in my own

program. Three different methods for choosing the N spins are discussed at the end of

Chapter 9.

ThoughHzz is the appropriate Hamiltonian to consider, the small number of spins that

we are able to treat can never describe the true dynamics of a macroscopic system even after

substantial disorder averaging.

5.5 Ising Model Truncation

Let us consider another approach that truncates the secular dipolar Hamiltonian and yields

an analytic expression for 〈Iy1(t)〉 in the delta-function pulse limit. This truncation enables

us to model the behavior of many more spins.

The secular dipolar Hamiltonian from equation (5.4) can be rewritten as

Hzz =
N∑

j=1

N∑
k>j

Bjk

(
2Izj

Izk
− 1

2
(I+

j I
−
k + I−j I

+
k )

)
(5.19)
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Figure 5.2: Expected decay curves for the delta-function pulse approximation using Hzz

(blue curve) and HIsing (black curve). The blue curve uses clusters of N = 9 spins and
disorder-averages over 1,000 DRs. The black cure uses N = 80 spins and averages over
20,000 DRs. Both calculations use the realistic silicon lattice (4.67% natural abundance of
spin-1/2 29Si nuclei, diamond lattice constant 5.43 Å). Hahn echo data (green circles) and
the CPMG echo train (dashed red lines) from Figure 4.1 are plotted in the background for
comparison.
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by defining the raising and lowering operators

I+ = Ix + iIy

I− = Ix − iIy.

We call I+
j I

−
k and I−j I

+
k the flip-flop terms. These terms flip one spin up and flop another

spin down while conserving the total angular momentum [79].

It is a very good approximation to drop the flip-flop terms whenever spins within a

cluster have quite different Zeeman energies. In this case, the flip-flop would not conserve

energy so this process is inhibited [79]. In that limit, Hzz is truncated to the Ising model

Hamiltonian with long-range interactions

HIsing =
N∑

j=1

N∑
k>j

2BjkIzj
Izk
. (5.20)

This approximation is usually made when considering the dipolar coupling between differ-

ent spin species. [79] In the homonuclear systems that we consider, this approximation is

not usually justified but we consider this limit here for comparison.

Using HIsing, the product operator formalism [81] enables us to analytically evaluate

〈Iy1(t)〉 for the central spin

〈Iy1(t)〉 = Iy1(0)
N∏

k>1

cos(B1kt/~). (5.21)

Since the expression in equation (5.21) is analytic [47], the calculation of the resultant curve

[Figure 5.4(black curve)] is not as computationally intensive as time-evolving the entire

density matrix. This calculation only requires the the numerical value of the dipolar cou-

pling B1k between the central spin and a random population ofN − 1 spins on the lattice.

In this way, many more spins can be treated. The final step is a disorder average over many

random lattice occupancies and random lattice orientations.

Despite the differences in the two approaches, the simulated curves for the same lattice

parameters are in reasonable agreement. The initial decay due to the secular dipolar Hamil-

tonian is two-thirds faster than the decay due to the Ising Hamiltonian in agreement with

second-moment calculations [47, 79, 89, 56]. The Hahn echo experiment in this sample
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follows the Isingmodel decay curve [Figure 5.4(green circles vs black curve)]. In other sam-

ples we have studied, the Hahn echo data lies between the calculated blue and black curves

but always decays to zero. It is surprising then that the CPMG experiment has measurable

coherence well beyond the decay predicted by either approach [Figure 5.4(red lines)].



Chapter 6

Exploring Experimental Imperfections

Because of the surprising results of the preceding section, we performed many experi-

ments to test whether certain extrinsic factors were to blame for the surprising experimental

data reported in Chapter 3. In this chapter, we show that even after greatly improving our

experimental pulses, the tail of the CPMG echo train persists well beyond the decay of the

Hahn echoes. We also report experiments with many different sample parameters that all

yield the same surprising results.

These experiments are quite different from the usual array of NMR experiments that

primarily focus on optimizing the signal-to-noise ratio. In contrast, we have plenty of sig-

nal to observe in the CPMG echo train, but our aimwas to find any sensitivity of the CPMG

tail height on some extrinsic parameter. Although deliberately imposing a large pulse im-

perfection may lead to NMR data that look qualitatively similar to those outlined in the

previous section, experimental improvements that greatly reduced these imperfections did

not make the effects vanish.

6.1 Nutation Calibration, Rotary Echoes, and Pulse Adjust-
ments

Without proper pulse calibration it is difficult to predict the result of any NMR experiment.

We calibrate the rotation angle of a real finite pulse through a series of measurements re-

sulting in a nutation curve [85]. This experiment begins with the spins in the Boltzmann

equilibrium ρB = IzT
. During a square pulse of strength H1 = ω1/2π and time duration

54
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Figure 6.1: Nutation curve data (dots) of 29Si in Si:Sb (2.75× 1017 Sb/cm3) agree with a
non-decaying sine curve over 8.25 cycles. H1 = 8.33 kHz, T = 300K, andBext = 12Tesla.

tnut applied along x̂ in the rotating frame, the spins will nutate in the y-z plane. Shortly

after tnut, the projected magnetization along ŷ is measured as the initial height of the FID.

Figure 6.1 shows a typical nutation curve in Si:Sb (1017 Sb/cm3). The π pulse is deter-

mined by the timing of the first zero-crossing of the nutation curve. This nutation calibra-

tion is typically repeated several times during a long experiment.

The nutation curve is also a measure of the quality of other aspects of the single-pulse

experiment [36]. For example, the homogeneity of the applied rf field may be inferred

from the decay of the nutation curve after several cycles. Figure 6.1 shows nutation data out

to over eight cycles with very little decay. Extending the nutation experiment out to even

longer pulse times (Figure 6.1) enables the study of the decay of its amplitude.

For such long nutation times, the dipolar coupling between spins contributes to the de-

cay [5]. This decay is calculated using the density matrix evolved under the time-evolution

operator for the full pulse [equation (5.8)] for time tnut. The expected decay envelope [Fig-

ure 6.1(dashed curves)] is the disorder-averaged expectation value 〈Iy1(t)〉 = Tr{ρ(t)Iy1}.
Another significant contribution to the decay of the nutation curve is rf field inhomo-

geneity. For a given spread of rf fields, the decay of the NMR signal depends on the num-

ber of nutation cycles, therefore, a nutation with a weaker H1 [Figure 6.1(top)] will decay

slower than a nutation with a stronger H1 [Figure 6.1(middle)]. The damped sine curves

include the contribution from dipolar coupling and add the spatial rf field variations due to
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Figure 6.2: Extended nutation data of 29Si in Si:Sb (2.75 × 1017 Sb/cm3) taken at room
temperature in a 12 Tesla field. (Top)H1 = 8.33 kHz. (Middle)H1 = 25 kHz. (Bottom)
Rotary echo data (green dots) and nutation data (blue dots) for H1 = 25 kHz. Dashed
lines in each graph show the expected decay envelope due to dipolar coupling during the
nutation pulse. Solid traces are calculations that include the dipolar decay, rf field spread
from our NMR coil, and skin depth of Si:Sb.
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Figure 6.3: Finding the minimum tail height for CPMG. (Top) CPMG data of 29Si in Si:P
(3.94 × 1019 P/cm3) with 2τ = 2.192 ms. (Bottom) Numbered spin echoes (SEn) are
plotted versus π pulse duration. SE15 and SE16 are expected to have zero amplitude. The
nutation calibrated π pulse has duration 12.2 µs. Data taken at room temperature in a 12
Tesla field.
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the calculated sample skin depth and the inherent inhomogeneities of our NMR coil.

The rotary echo experiment [80] compensates for static spatial rf field inhomogeneities

by reversing the phase of the nutation pulse at a time near tnut/2. Using this technique, the

rotary echo data [Figure 6.1(green dots) approach the dipolar decay envelope even though

the nutation data [Figure 6.1(blue dots) decay much faster.

So far, the Hahn echoes, the nutation curve, and rotary experiment all agree with the

model for calculating the NMR signal developed in Chapter 4. One significant difference

between these experiments and the CPMG sequence is that they consist of only one or two

applied pulses while the CPMG sequence has many pulses. It is possible that the calibration

for the CPMG sequence could be different then that set by the nutation curve. We explored

this question of calibration by varying tp of the π pulse to see if the expected decay would be

recovered. Figure 6.1(bottom) plots a series of echoes from the CPMG sequence versus the

misadjusted π pulse duration. Spin echo 15 (SE15) and spin echo 16 (SE16) are represen-

tative of coherence that should decay to zero for delta-function π pulses. Despite the wide

range of pulse durations attempted, the tail of the CPMG echo train never reached zero.

Modifying CPMGwith more complicated pulse phase patterns [25, 76] changes the results,

but echoes at long times are still observed.

6.2 RF Field Homogeneity

If the strength of the rf field during a pulse greatly varied from spin to spin, then the pulse

calibration would not be consistent across the sample. To test whether this extrinsic effect

could cause the results of Chapter 3, we examined the rf field homogeneity in our NMR coil

and made improvements by modifying the sample.

An ideal delta-function pulse affects all spins in the systemwith the same rf field strength.

However, a real NMR coil is a short (∼10 turn) solenoid with rf fields that vary in space

[30]. Figure 6.2 shows a calculation of the rf field homogeneity in the quasi-static approxi-

mation using the Biot-Savart law for our seven-turn NMR coil [33, 66]. The grayscale plot

indicates the spatial variation of rf fields where lighter colored regions are areas of higher rf

field strength. The proximity effect would slightly smooth out these rf fields beyond what

is shown [10, 30, 84].
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Figure 6.4: (Top) Sectional calculation of the rf field homogeneity in our NMR coil. Two
cylindrical sample sizes are outlined. (Middle) Histograms of rf field strength distribution.
(Bottom) CPMGdata for the two sample sizes of 29Si in Si:P (3.43×1019 P/cm3) are nearly
identical despite the noticeable change in rf field homogeneity. 2τ = 2.192 ms, T = 300
K, and Bext = 7 Tesla.
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Figure 6.5: Pulse phase sensitivity and rf homogeneity tests in an insulating sample. CP,
CPMG, APCP, and APCPMG data of 13C in C60 for a large sample volume (left column)
and a small sample volume (right column). All are expected to agree in the delta-function
pulse limit. H1 = 45.5 kHz, 13C NMR linewidth = 290 Hz, 2τ = 180 µs, T = 300 K,
Bext = 12 Tesla.
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For a given coil, the rf field homogeneity can be improved by decreasing the sample

volume. To this end, we performed experiments using two different sample sizes to assess

the influence of rf homogeneity on the long tail in the CPMG echo train. Figure 6.2 shows

histograms of the rf field distribution within the two sample sizes and the corresponding

CPMG echo trains. These rf field calculations were performed by Kenneth MacLean. No

noticeable difference in the tail height was observed despite the marked improvement of rf

homogeneity.

In addition to the coil dimensions, the sample itself may have properties that introduce

an rf field inhomogeneity. For example, the skin depth in metallic samples attenuates the rf

field inside the sample [33, 66, 82]. Two approaches were taken to reduce the contribution

of skin depth effects to the rf field homogeneity. In the first approach, a sample of highly

doped Si:P (1019 P/cm3) was ground, passed through a 45 µm sieve, and diluted in paraffin

wax. This high-doped silicon sample has a resistivity of 0.002 Ohm-cm. At a 12 Tesla

field the rf frequency applied is 101.5 MHz. Thus the skin depth at this frequency is 223.3

µm. Particle diameters on the order of 45 µm would only have a 10% reduction of the field

at the center. Furthermore, dilution in wax helps to separate the particles. Despite this

improvement, the effects summarized in Chapter 3 remained.

The second method to reduce the rf field attenuation caused by skin depth is to use less

metallic samples. Four different silicon sampleswere used that differ in dopant type (donors

or acceptors) and dopant concentrations (up to a factor of a million less for Si:P with 1013

P/cm3). For samples doped below the metal-insulator transition [82], the calculated skin

depth is very large and the rf field attenuation at the center of the particle is much smaller.

For example, Si:Sb (2.75 × 1017 Sb/cm3) has a skin depth of 1.05 mm, which reduces the

H1 field by 2% at the center of a 45 µm particle. Si:P13 (resistivity 0.97 Ohm-cm to 2.90

Ohm-cm) has a skin depth range of 4.92 cm to 8.50 cm, which results in a less than 0.03%

reduction in rf field at the particle center. Additionally NMR of 13C in C60, and 89Y in Y2O3,

two insulating samples, show the same behavior as in silicon [45, 14, 21].

Figure 6.2 shows the four pulse sequences in C60 for two sample sizes. Similar data was

taken in other samples. This data in particular was taken by Rona G. Ramos. Despite the

improvement in rf field homogeneity, the long tail in the CPMG echo train and the pulse

sequence sensitivity are largely unaffected.
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Figure 6.6: Measured pulse shapes in-phase (red) and out-of-phase (green) for a typical π
pulse (left) and π/2 pulse (right) at radio frequency 101.5 MHz with pulse strength H1 =
33.3 kHz. Transients are a larger fraction of short duration pulses like π/2. Data taken
at room temperature in a 12 Tesla field. The real π pulse is approximated as three pure
rotations 4X̄180.1Y 3X .

6.3 Measuring the Pulse Transients

Pulse transients are another possible source of experimental error [49, 57, 91, 92]. In princi-

ple, the perfect pulse is square and has a single rf frequency. In practice, however, the NMR

tank circuit produces transients at the leading and trailing edges of the pulse. Because the

pulse transients have both in-phase and out-of-phase components, they can cause spins to

move out of the intended plane of rotation. These unintended transients can contribute to

poor pulse calibration and possible accumulated imperfections. Therefore, it is important

to quantify the pulse transients specific to our apparatus.

Tomeasure the real pulse, we inserted a pickup loop near our NMR coil and applied our

regular pulses [49, 57, 91]. Figure 6.3 shows the typical π pulse and π/2 pulse envelopes.

The red traces show the in-phase components of the pulses while the green traces show the

out-of-phase components. Empirically, changing parameters like the resonance and tuning

of the NMR tank circuit changes the shape of the transients and even the sign of the out-

of-phase components.

For short time pulses (e.g. a π/2 pulse), the transient constitutes a larger fraction of the

entire pulse. Consequently, the dominate pulse transient in these short pulses could lead
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to larger extrinsic effects. Furthermore, since H1tp = 1/2 is fixed for π pulses, one would

expect that any extrinsic effects caused by pulse transients would also be larger for stronger

(i.e. shorter in time) π pulses.

The affect of the pulse transients on the multiple pulse sequences may be simulated

[92] by approximating the real π pulse along ŷ as a composite pulse of three pure rota-

tions 180Y → 4X̄180.1Y 3X . Including the pulse transients in simulation yielded only small

changes in the expected decay envelope derived in Chapter 4 and could not reproduce the

effects from Chapter 3.

While the pulse transients are sensitive to many changes in our NMR apparatus, the

observed effects in from Chapter 3 are qualitatively insensitive. Therefore, we infer that the

pulse transients are not the dominant cause of these effects.

6.4 Pulse Strength Dependence

How strong does a real pulse need to be in order to be considered a delta-function pulse?

The limit described in Chapter 4 assumes pulses of infinite strength. This limit ensures that

all the spins are rotated identically. On the other hand, weak pulses treat different spins

differently. Thus, if the calibration, rf field homogeneity, or pulse strength were grossly

misadjusted [32], then the observed behavior could deviate from the calculation in Chapter

4.

However, Figure 6.4 shows CPMG experiments in Si:Sb (1017 Sb/cm3) for a variety of

pulse strengths. The tail height is extrapolated as a t = 0 intercept from the CPMG pulse

sequence [Figure 6.4(top)] and plotted versus the rf field strengthH1 = ω1/2π normalized

by the full-width-at-half-maximum (FWHM) of the Si:Sb lineshape. For each data point, a

separate nutation curve was measured to calibrate the π pulse. The tail height of the CPMG

echo train is largely insensitive to the pulse strength forH1/FWHM from 4 to 450.

The expected CPMG decay may be simulated using finite pulses [101] in an exact calcu-

lation forN = 5 spins in silicon [Figure 6.4(bottom, open blue triangles)]. These calcula-

tions agree with the data when the pulses are extremely weak (H1/FWHM< 1 ) but quickly

fall to zero once the pulses are over ten times the linewidth. Thus, these calculations agree

with the conventional assumption that the strong pulse limit is achieved whenH1/FWHM
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Figure 6.7: Dependence of CPMG tail height on pulse strength. (Top) Tail height is
extrapolated as a t = 0 intercept for CPMG of 29Si in Si:Sb (2.75 × 1017 Sb/cm3) with
2τ = 2.192 ms. This example is forH1/FWHM= 222. (Bottom) CPMG tail height versus
pulse strength. Smaller samples and NMR coils were used to achieve the last two points.
Exact calculations forN = 5 spins in silicon (triangles) decay to zero forH1 > FWHM.
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Figure 6.8: Pulse sequences CP, APCP, CPMG, and APCPMGusing standard π pulses (left
column), Levitt composite π pulses (middle column), and BB1 composite π pulses (right
column). H1 = 35.7 kHz, 2τ = 72 µs, T = 300 K, Bext = 11.74 Tesla.

� 1, a limit that is easily achieved in our experiments.

Because the experimental tail height in CPMG is so insensitive to large changes in pulse

strength, we conclude that strong π pulses are not the same as delta-function pulses.

6.5 Using Composite π Pulses to Improve Pulse Quality

Another way to improve pulse quality is to use composite pulses [18, 22, 43] in place of

single π pulses. Composite pulses were designed to correct poor pulse angle calibration, rf

inhomgeneity, and the effects of weak pulses [87] by splitting a full rotation into separate

rotations about different axes. These separate pieces counteract pulse imperfections when
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strung together.

Figure 6.5 shows a series of experiments where the single π pulses in CP, APCP, CPMG,

and APCPMG are replaced by composite pulses. The Levitt composite pulse [44, 43] makes

the replacement

Levitt : 180Y → 90X180Y 90X . (6.1)

The BB1 composite pulse [13, 99] makes the replacement

BB1 : 180Y → 180α360β180α180Y (6.2)

whereX = 0◦, Y = 90◦, α = 194.5◦, and β = 43.4◦. Even though these composite pulses

should improve pulse quality [13], the CPMG tail height and the sensitivity to π pulse phase

is hardly affected. I am grateful for the help from John D. Murray and Kurt Zilm for these

experiments.



Chapter 7

Exploring External Dynamics of the
System

More experimental exploration was done to find sources of unusual coherence or deco-

herence in the samples themselves. In this chapter, we continue our search for experimental

or material parameters that are commonly thought to alter the NMR signal.

7.1 Absence of Non-Equilibrium Effects

This experiment tests the assumptionmade inChapter 4 that the equilibriumdensitymatrix

is simply ρB = IzT
. This ρB assumes that equilibrium is reached after waiting longer than

the spin-lattice relaxation time T1 before repeating a CPMG sequence [79]. If, however, an

experiment is started out of equilibrium, then any unusual coherences [42, 96] present in

the initial density matrix might lead to a different NMR signal.

Figure 7.1 shows the CPMG echo train in two regimes. In red, the CPMG echo train is

repeated after waiting only a fifth of the spin-lattice relaxation time T1. In blue, the CPMG

echo train is repeated after waiting 5×T1. Inset (a) shows the saturation-recovery data that

determines T1. A single exponential is a good fit to the data supporting the assumption of

a single mechanism for spin-lattice relaxation. Inset (b) shows a close-up of echoes for the

two wait times. For shorter wait times, the echo shape is slightly distorted at the base of

the echoes compared to the much longer wait times. However, the CPMG echo peaks still

exhibit a long tail and is insensitive to the wait time.

67
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Figure 7.1: Non-equilibrium effects and spin-lattice relaxation. (Main) CPMG echo train
for 29Si in Si:P (3.94 × 1019 P/cm3) with saturation recovery time trec = 1 s (red) and
trec = 20 s (blue). T = 300 K, Bext = 12 Tesla, 2τ = 592 µs. The initial height of the
FIDs are scaled to agree. (a) Exponential fit to the saturation recovery experiment gives
T1 = 4.9 s in this sample (b) Close-up of echo shapes.



CHAPTER 7. EXPLORING EXTERNAL DYNAMICS OF THE SYSTEM 69

1.0

0.8

0.6

0.4

0.2

0.0

N
o
rm

a
liz

e
d
 N

M
R
 S

ig
n
a
l

0.120.100.080.060.040.020.00

Time (ms)

Figure 7.2: Temperature effects on CPMG tail height. CPMG echo peaks at room tem-
perature (red) and 4 Kelvin (blue) in Si:P (3.94 × 1019 P/cm3) diluted in paraffin wax.
2τ = 2.192 ms, Bext = 12 Tesla.

7.2 Absence of Temperature Dependence

The CPMG tail height could be sensitive to both temperature-dependent effects specific to

each sample and temperature-independent effects found in all dipolar systems. To distin-

guish between the two sets of effects, we performed the CPMG pulse sequence in Si:P (1019

P/cm3) at room temperature and at 4 Kelvin. Figure 7.2 shows that the CPMG tail height

is insensitive to the large change in temperature.

These results update previously reported data in the same sample [14]. Lowering the

temperature increases the spin-lattice relaxation time T1 from 4.9 seconds at room temper-

ature to over 6 hours at 4 Kelvin. As a consequence, the increased T1 at low temperatures

required us to perform experiments at a much slower rate where our NMR tank circuit

would be susceptible to temperature instabilities. These temperature instabilities caused

poor pulse calibration from time to time. To rectify this problem, we repeated the CPMG

pulse sequence many times at 4 Kelvin and measured the nutation curve after each repeti-

tion. If the calibration remained consistent between four applications of the CPMG pulse

sequence, we averaged the four scans together to obtain the 4 Kelvin data in Figure 7.2(blue

squares). None of these issues were present in the room temperature data.

In addition, the sample was carefully prepared by sieving the crushed powder to < 45
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Sample γ/2π (MHz/Tesla) n.a. (%) T1 (s)
13C in C60 10.7 1.11 25.8
29Si in Si:P (1013) 8.46 4.67 17640
29Si in Si:B (1016) 8.46 4.67 10080
29Si in Si:Sb (1017) 8.46 4.67 276
29Si in Si:P (1019) 8.46 4.67 4.9
89Y in Y2O3 2.09 100 8280

Table 7.1: Dipolar solids used in these studies and their NMR spin-1/2 nucleus, gyromag-
netic ratio (γ), natural abundance (n.a.), and spin-lattice relaxation time (T1).

µm and diluting it in paraffin wax to reduce the skin depth effect and to reduce clumping

when cooling in a bath of liquid helium.

Absence of temperature dependence supports the assumption that the relevant internal

Hamiltonian isHint = HZ +Hzz.

7.3 Similar Effects Found in Different Dipolar Solids

We performed the same pulse sequences in many different dipolar solids to show that the

effects reported in Chapter 3 are universal. Table 7.3 summarizes the samples used in these

studies and outlines dramatically different features including the T1, which varies from 4.8

seconds to 5.5 hours at room temperature [45, 14]. Measurements in a variety of silicon

samples with different doping concentrations, different dopant atoms, and even different

dopant types (N-type and P-type) show the same qualitative results despite the signifi-

cant differences in their local environments (Figure 7.3). These experiments, although time

consuming, contributed significantly to our understanding of the universality of the effects.

These experiments in silicon ultimately led us to believe that the results would be observable

in any spin-1/2 system, and probably even in pseudo-spin systems.

We also performed the sameNMRpulse sequences on different nuclei [45]. The CPMG

echo trains of 13C in C60 have long tails that outlast both the measured Hahn echoes and

the predicted decay when calculated using the Ising model and delta-function π pulses.
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Furthermore, we see the same qualitative results for 89Y in Y2O3. Because the natural abun-

dance (n.a.) of 89Y is 100%, dilution of the spins on the lattice does not contribute to the

results [20, 37].

Additionally, at room temperature, C60 molecules form an fcc lattice, and each C60 un-

dergoes rapid isotropic rotation about its lattice point [86, 100]. Thismotion eliminates any

inter-C60 J coupling[79] but leaves the dipolar coupling between spins on different buck-

yballs. Thus the J coupling, which we have not included inHint [equation (5.6)], does not

play a major role in the results [2, 22].

As Figure 7.4 shows, the even-odd effect as well as the long tail in CPMG can be seen in

any spin system. The scale of the dipolar coupling sets the transition in interpulse spacing

where the long tail in CPMG changes to the even-odd effect in the heights of the echoes.

Phenomenologically, we have found that this transitional π pulse spacing occurs near T2 as

calculated by the delta-function pulse approximation. Coincidentally, in the case of 13C IN

C60, this timing was around 20 ms, which is the about the same for 89Y in Y2O3. However,

for 29Si in doped silicon, this transitional time was around 6 ms. In protons, we find the

transition time at around 1 ms [67].

7.4 Single Crystal Studies

In order to reduce the effects of skin depth [33, 66, 82], most of our samples were ground

to a powder. The calculations outlined in Chapter 4 took this into account in the disorder

average by configuring each disorder realization with a random orientation of the lattice

with respect to ~Bext. Then, by picking small clusters of N spins, each disorder realization

was designed to represent a realistic cluster in any one powder particle.

The real ground powder particles have different shapes and sizes. Though the magnetic

susceptibility of silicon is very low [31], each powder particle would have a slightly different

internal field due to its shape [33, 66]. By approximating the random powder particle as an

ellipsoid of revolution, we calculated the resultantmagnetic susceptibility broadening of the

NMR linewidth [6, 12, 17, 60, 61, 77]. Convolving the magnetic susceptibility broadening

with the dipolar linewidth accounted for the 290 Hz FWHM of our Si:Sb (2.75 × 1017

Sb/cm3) powder sample.
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Figure 7.5: NMR data in a single crystal of Si:Sb (2.75 × 1017 Sb/cm3) oriented with its
(110) axis along ẑ (see top inset). (Top) NMR spectrum (red) compared with a calculation
for silicon that include dipolar coupling ofN = 6 spins, magnetic susceptibility broadening,
and skin depth due to the crystal shape (blue). FWHM=110Hz. (Middle) CPMGecho train
for 2τ = 2.1 ms shows the long tail. (Bottom) CPMG echo train for 2τ = 5.2 ms shows
the even-odd effect.
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In order to reduce the extrinsic broadening due to the magnetic susceptibility, we stud-

ied a single crystal of Si:Sb. Measurements in a single crystal allow confirmation of the

lattice model and furthers the understanding of the magnetic susceptibility broadening. In

a single crystal of Si:Sb (2.75× 1017 Sb/cm3) the orientation of the lattice allows only dis-

crete coupling constants and subsequently, a unique dipolar lineshape. Additionally, the

shape and orientation of the crystal with respect to ~Bext yields a smaller spread in the in-

ternal field due to the magnetic susceptibility [60]. Figure 7.4(inset, blue spectrum)] plots

the convolution of the dipolar lineshape and the magnetic susceptibility broadening for the

single crystal. The small satellites in the spectrum are due to the dipolar coupling between

nearest-neighbors. This simulation is a good fit to themeasured spectrum [Figure 7.4(inset,

red spectrum)].

In the single crystal, the CPMG echo train still exhibits a long-lived coherence for short

τ [Figure 7.4(middle)] and the even-odd effect for longer τ [Figure 7.4(bottom)]. These

single crystal experiments were performed by Rona G. Ramos. I thank her for allowing me

to present this data in my thesis.

7.5 Magic Angle Spinning

The technique of magic angle spinning [18, 55, 75, 79] (MAS) is used to reduce the dipolar

coupling coefficient by rotating the entire sample about an axis tilted at 54.7◦ with respect to
~Bext. In the time-average, the angular factor (1−3 cos2 θjk) in the dipolar coupling constant

[see equation (5.5)] vanishes. In addition to reducing the dipolar coupling, MAS eliminates

Zeeman shift anisotropies and first order quadrupole splittings. These experiments seek to

connectHzz to the effects outlined in Chapter 3. Also, narrowing the NMR linewidth even

further than in the single crystal leads to a better understanding of the population of 29Si

nuclei in the silicon lattice.

The FWHMof theMAS spectrum of Si:Sb (2.75×1017 Sb/cm3) [Figure 7.5(top graph,

red spectrum)] decreased by almost a factor of 6 compared with the spectrum of the static

sample [Figure 7.5(top graph, black spectrum)]. Despite this narrowing, theMAS spectrum

does not resolve distinct features in the NMR lineshape. The upper limit on the spread in

Zeeman shifts is consistent with the single crystal data (Figure 7.4). Therefore, we conclude
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that onlyHint = HZ +Hzz is needed to produce the static spectrum for this sample.

Figure 7.5 shows the CPMG echo train for two different time delays τ taken during

MAS. The top graph shows that the echo train decays even more slowly than in the static

sample. Also, for very large inter-pi-pulse spacings, as shown in the bottomgraph, the even-

odd effect is not present. The absence of the dipolar coupling and the dramatic changes in

the observed CPMG echo trains suggest thatHzz plays an important role in our static NMR

studies. TheseMAS experimentswere performed byYanqunDong. I thank her for allowing

me to present this data in my thesis.

We conclude these two experimental chapters by stating that these studies are by no

means a complete study of all extrinsic effects in NMR. They are, however, representative

of the high quality of the pulses that we use and the simple spin Hamiltonian of the nuclei

under study. These experiments are near-optimal yet still exhibit the unexpected behavior

of multiple π pulse echo trains. From these experimental results we can make concrete

assumptions about the real pulse P and the real free evolution V .
The experiments outlined in Chapters 5 and 6 provide the following constraints on any

theoretical model thatmay explain our results: (1) the relevant internal Hamiltonian should

contain only the Zeeman and dipolar Hamiltonians Hint = HZ + Hzz and (2) the pulses

are strong and address all spins equally, but they are not instantaneous.



Chapter 8

Exact Calculations with Finite Pulses

As we have shown in Chapter 4, instantaneous π pulses are not expected to affect the

transverse relaxation time in dipolar solids. Application of multiple π pulses only serve to

refocus the static spread of Zeeman shifts while the overall measurable coherence decays to

zero under the action of the dipolar Hamiltonian as if no pulses were applied at all.

However, the experiments reported in Chapter 3 contradict these expectations in many

surprisingways. For example, themeasurable coherence appears to be sensitive to the phase

of the applied π pulses. Some multiple π pulse echo trains extend well beyond the expected

T2 (CPMG, APCP) while others decay much faster (CP, APCPMG).

Additionally, the experimental explorations of Chapters 5 and 6 strongly suggest that

extrinsic pulse imperfections are not responsible for these large discrepancies. Our observed

effects are universal across many different samples all connected by the same form of the

dipolar Hamiltonian. Thus, only the Zeeman and dipolar Hamiltonians are needed but the

validity of the instantaneous π pulse approximation must be reconsidered.

In this chapter, we calculate the exact evolution of the density matrix by numerical

means. The action of strong but finite pulses under the simultaneous influence of the dipo-

lar Hamiltonian is the intrinsic effect that can lead to the large discrepancies we have ob-

served.

8.1 Realistic Parameters

The first approach to calculate the expected results for finite pulses is the most straightfor-

ward: use everything we have gleaned from our experimental explorations about the pulses

78
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and the spin system and apply the identical parameters in simulation. We begin this exact

calculation by modifying the approach outlined in Chapter 4.

Since the delta-function pulse approximation has failed to explain our results, we return

to the exact form of the pulse evolution operator from equation (5.8)

Pφ = exp

(
− i

~
(HZ +Hzz +HPφ

)tp

)
(8.1)

whereHZ is the Zeeman Hamiltonian,Hzz is the secular dipolar Hamiltonian, andHPφ
=

−~ω1IφT
is the Hamiltonian form of an rf pulse applied for time tp along the φ-axis in the

rotating frame.

To model the evolution of a spin system after n pulses, the relevant form of equation

(4.3) becomes

ρ(t) = {UPφU}nρ(0){U−1P−1
φ U−1}n (8.2)

where the free evolution propagator is given by U = exp(− i
~(HZ +Hzz)τ). From here, no

approximations are made. Instead, numerical diagonalization is used during each Pφ and

U to evaluate ρ(t) for the four pulse sequences that we consider [45, 16].

Figure 8.1 shows the exact calculations for all four pulse sequences CP, CPMG, APCP,

and APCPMG using the same parameters as in the experiment. Unfortunately, the exact

calculation fails to fit the data. These calculated curves deviate only slightly from the expec-

tations for delta-function pulses.

Encouragingly, however, there are small differences between each calculated curve (Fig-

ure 8.2). This is a curious result since for the pulses used,H1 divided by the FWHM of the

spectrum was larger by a factor of 108, well beyond the conventional strong-pulse limit.

Furthermore, the slight deviations between the calculated curves have the same qualitative

comparisons with respect to each other as in the experiments. Namely, the CP simulated

curve decays faster than the CPMG simulated curve, and the APCPMG simulated curve

decays faster than the APCP simulated curve.

These slight differences between the calculated curves helped inspire us to perform ad-

ditional calculations. In the next section, we inflated the dipolar coupling between spins in

the hopes that the differences between the curveswould be amplified. Wewere also inspired

to take this route from NMR experiments on protons in liquid crystals because the proton
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Figure 8.1: Exact calculations for the silicon experiments in pulse phase sensitivity for mul-
tiple π-pulse echo trains. The black reference curve is calculated assuming the dipolar cou-
pling is set to zero during each pulse. In this limit, each pulse sequence produces the iden-
tical curve. Calculation parameters: N = 7 spins,H1 = 35.7 kHz (14 µs π pulse), 2τ = 72
µs. These parameters are identical to the NMR data in Figure 4.4 except for the number of
spinsN . Figure 8.2 compares these calculations with the experiment.
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Figure 8.2: Comparison of exact calculations to actual NMR data using strong but finite π
pulses in silicon. CPMG (red), CP (blue), APCP (green), and APCPMG (brown). Calcu-
lations use parameters: N = 7 spins, H1 = 35.7 kHz (14 µs π pulse), 2τ = 72 µs, which
are identical to the NMR data except for the number of spins N . The black dashed refer-
ence curve is calculated assuming that the dipolar coupling is turned off during the pulses.
While there is a noticeable difference between each calculation curve when compared with
the black dashed reference, the small sensitivity to pulse phase in the calculation does not
quantitatively describe the data. It would appear that a further extrinsic parameter would
need to be introduced to account for the remaining differences between each data curve.
However, experimental tests of Chapters 6 and 7 suggest that no such extrinsic effects are
needed. The calculation must be flawed in the only parameter that differs from experiment,
N .
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dipolar coupling is much stronger than 29Si in silicon yet we observed the same qualitative

results.

It may be helpful to point out that each of the four exact calculations in Figure 8.1 re-

quired 7 full days of computer time, which forced us to carefully consider the benefit of per-

forming all four calculations. Initially, from the expectations derived in Chapter 5, it was

thought that the strong pulses would produce very little deviation between any of the four

sequences (after taking the absolute value). It turned out that the first calculation after 7

days yielded the top right graph in Figure 8.1, which differs very little from the underlying

black curve for instantaneous pulses (dipolar coupling set to zero during pulses). How-

ever, I strongly suggested that we invest the time to calculate all four curves, in the least, to

have evidence that the finiteness of pulses contributes nothing to the coherence. Although

the deviation between the curves is small, it inspired us to reconsider the assumptions of

strong pulses that eventually led to our understanding of the intrinsic origin of the observed

long-lived coherence in CPMG. In this way, we greatly benefitted by not giving in to the

temptations of bias for the sake of saving time.

8.2 Inflating the Dipolar Coupling

In this set of calculations, we strayed from the experimental parameters for the silicon data

in the search for parameters in the exact calculation that would produce the deviations ob-

served in Figure 8.1. The naturally weak dipolar coupling strength in silicon was not a

necessary ingredient to observe the effects in experiment since we also found qualitatively

similar effects in different nuclear systems including 13C inC60, 89Y in Y2O3, as well as in 1H

in Adamantane [16, 67]. This allowed us to freely consider much strong coupling strengths

then that of 29Si in silicon.

Additionally, the expectations of Chapter 5 confirm that any delay between repeated

π pulses will lead to decay. That is, no long-lived tail can develop for the CPMG pulse

sequence as long as there are finite delays between the π pulses. Thus we were able to also

reduce the inter-pulse delay times 2τ to enhance the effects of the strong but finite π pulses

while remaining within the boundaries of experimentally realizable conditions.

Figure 8.3 plots the exact calculation of 〈Iy1(t)〉 = Tr{ρ(t)Iy1} [equation (5.14)] aver-
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Figure 8.3: Exact calculations using strong but finite π pulses. Calculations use parameters:
N = 6 spins, simulated pulse strengthH1 = 40 kHz (tp = 12.5µs), delay between π pulses
2τ = 2 µs, dipolar coupling scaled by 25 × Bjk of 29Si, Zeeman shift Ωz/h drawn from a
3 kHz wide Gaussian for each DR, and the disorder average is taken over 150 DRs. The
full lineshape is 4 kHz, which is a convolution of the pure dipolar line of 2.2 kHz and the
Zeeman spread of 3 kHz. Compare these curves to the data of Fig. 4.4. CPMG and APCP
display long-lived tails while CP and APCPMG decay to zero.

aged over 400 disorder realizations (DRs) for the four pulse sequences CP, CPMG, APCP,

and APCPMG. These exact calculations have the same qualitative trends as the experi-

ments. Namely, CPMG and APCP produce long-lived measurable coherence while CP and

APCPMG decay away to zero. Since these exact calculations include no extrinsic imperfec-

tions, we conclude that the dipolar Hamiltonian and Zeeman Hamiltonian under the pulse

must be the sole cause for the different time-evolved curves in Fig. 8.3.

However, there are two important caveats for these calculations. First, we used anN =

6 spin system to simulate the behavior of a macroscopic spin system. Because of computer
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limitations, using a much larger system is not possible, inevitably leaving out many multi-

spin entanglements. Second, we artificially inflated the dipolar coupling strength, which

makes the differences in the curves more consistent with the experiments. We will return

to these two important points in the last part of this section to show how system size and

coupling strength are related.



Chapter 9

Average Hamiltonian Theory for Finite
Pulses

Tounderstand themechanismsunderlying the exact calculation, we turn to averageHamil-

tonian theory [27, 28, 52, 55, 79] to obtain approximate analytic results for the four pulse se-

quences under study. This analysis, in turn, allows the development of further calculations

to uncover trends in the behavior ofN spins under strong π pulses.

Average Hamiltonian or coherent averaging theory [27] was developed in NMR to ap-

proximate the behavior of multiple pulse experiments that use many π/2 pulses. Addition-

ally, average Hamiltonian theory can be used to describe NMR experiments with very long

pulses such as spin-locking or the magic-echo [69, 70].

Here, we wish to apply average Hamiltonian theory to a train of strong but finite π

pulses where the delta-function pulse approximation (Chapter 5) predicts echoes that de-

cay to zero. Because our pulses are so strong (Figure 6.4), we expected the nonzero pulse

duration to give only a small perturbation to the delta-function pulse approximation. How-

ever, the exact calculations show a dramatic departure from this expectation (Figure 8.3).

9.1 Magnus Expansion in the Toggling Frame

The average Hamiltonian analysis starts from the total time-dependent Hamiltonian of an

interacting spin system in the presence of an rf field

Htot(t) = HZ +Hzz − ~ω(t)IφT
(9.1)

85
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whereω(t) = ω1 during a pulse and zero during free evolution.HZ andHzz are the Zeeman

Hamiltonian and the secular dipolar Hamiltonian respectively [equations (5.3) and (5.4)].

The spin operator along φ can be projected along the principle axes in the rotating frame

IφT
= cosφIxT

+ sinφIyT
.

We label the first two terms of equation (9.1) as the internal HamiltonianHint = Hzz +

HZ in the language of average Hamiltonian theory [27, 55]. The applied pulse term then

becomes the external or rf HamiltonianHrf (t) = −~ω(t)Iφ.

The total time-evolution operator

Utot(t) = T exp
[
− i

~

∫ t

0

dt′H0(t
′)
]

(9.2)

can then be split into a product of two parts

Utot(t) = Urf (t)Uint(t) (9.3)

Urf (t) = T exp
[
− i

~

∫ t

0

dt′Hrf (t
′)
]

(9.4)

Uint(t) = T exp
[
− i

~

∫ t

0

dt′H̃(t′)
]

(9.5)

H̃(t) = U−1
rf (t)HintUrf (t) (9.6)

where T is the Dyson time-ordering operator [79] and H̃(t) is the toggling frame Hamil-

tonian [27, 28, 55]. This separation is convenient whenHrf is periodic and cyclic with cycle

time tc. In this case, Urf (tc) = 1 and the Magnus expansion [50] gives

Uint(ntc) = exp
[
− i

~
ntc(H̄(0) + H̄(1) + H̄(2) + ...)

]
(9.7)

for the time-evolution after any multiple, n, of the cycle time. The first two terms in the

expansion are given by

H̄(0) =
1

tc

∫ tc

0

dtH̃(t) (9.8)

H̄(1) = − i

2tc~

∫ tc

0

dt2

∫ t2

0

dt1[H̃(t2), H̃(t1)]. (9.9)

The advantage of the Magnus expansion is that the full time-evolution operator Utot(t)

is nowwritten as a single exponential instead of a product of exponentials. Additionally, the
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terms in the average Hamiltonian expansion H̄(0), H̄(1), H̄(2) . . . are time independent and

exactly describe the system atmultiples of the cycle time tc. In practice, this exact expression

is replaced by an approximate one when the series expansion is truncated after the first few

terms [27, 28, 52, 55, 79].

The four pulse sequences studied here all have the same cycle time tc = 4τ + 2tp con-

sisting of two π pulses with a time delay of τ before and after each pulse. The average

Hamiltonian description is simplest when the cycle time is short and the pulses are strong

compared with the Zeeman spread, ω1 � Ωz, since the expansion in equation (9.7) is then

dominated by the first few terms.

Using these steps we can calculate the leading terms for the four pulse sequences under

study. For example, the time-evolution of ρ(t) under the CPMG sequence is

ρ(t) = Utot(t)ρ(0)U
−1
tot (t)

= {U5P4U3P2U1}nρ(0){inv}n (9.10)

where P2 = P4 are π pulses along ŷ and include the Zeeman and dipolar Hamiltonians.

Ui, i = 1, 3, 5 are the free evolution propagators that only include the Zeeman and dipolar

Hamiltonian.

After identifying the parts ofUtot, the next step is to calculate the toggling frameHamil-

tonians for each of these events. As an example, H̃(t3) in CPMG for event U3 is

H̃(t3) = {U−1
rf (t1)U

−1
rf (t2)U

−1
rf (t3)}Hint{inv}

= R−1
y (ΩzIzT

+Hzz)Ry

= −ΩzIzT
+Hzz (9.11)

where the unitary operators Urf are applied in reverse time-ordering [equation (9.6)].

Table 9.1 gives the expressions for all the toggling frame Hamiltonians as modified by

Hrf in each event of the CPMG sequence. Note that the difference between the toggling

frame transformation of the U3 interval and the U1 and U5 intervals is only the sign in front

of the Zeeman term ΩzIzT
. This detail is important because it is an explicit indication that

the pulses are free from any extrinsic errors. Thus, Iz rotates to −Iz after each π pulse.

This rotation flips the sign of the single-spin ZeemanHamiltonian, but does nothing to the

bilinear dipole Hamiltonian.
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Event Time H̃(ti) for CPMG

U1 τ +ΩzIzT
+Hzz

P2 tp +Ωz(IzT
Cθ + IxT

Sθ)− 1
2
Hyy +HS

yC2θ +HA
y S2θ

U3 2τ −ΩzIzT
+Hzz

P4 tp −Ωz(IzT
Cθ + IxT

Sθ)− 1
2
Hyy +HS

yC2θ +HA
y S2θ

U5 τ +ΩzIzT
+Hzz

Table 9.1: Toggling frame Hamiltonians H̃(ti) during each event of the CPMG cycle {τ−
180Y −2τ−180Y −τ} where tp is the pulse time, and τ is the free evolution time. Cθ =
cos(ω1t), C2θ = cos(2ω1t), Sθ = sin(ω1t), S2θ = sin(2ω1t).

Event Time H̃(ti) for CP

U1 τ +ΩzIzT
+Hzz

P2 tp +Ωz(IzT
Cθ − IyT

Sθ)− 1
2
Hxx +HS

xC2θ −HA
x S2θ

U3 2τ −ΩzIzT
+Hzz

P4 tp −Ωz(IzT
Cθ − IyT

Sθ)− 1
2
Hxx +HS

xC2θ −HA
x S2θ

U5 τ +ΩzIzT
+Hzz

Table 9.2: Toggling frame Hamiltonians H̃(ti) during each event of the APCP cycle {τ−
180X−2τ−180X−τ}.

Event Time H̃(ti) for APCP

U1 τ +ΩzIzT
+Hzz

P2 tp +Ωz(IzT
Cθ + IyT

Sθ)− 1
2
Hxx +HS

xC2θ +HA
x S2θ

U3 2τ −ΩzIzT
+Hzz

P4 tp −Ωz(IzT
Cθ − IyT

Sθ)− 1
2
Hxx +HS

xC2θ −HA
x S2θ

U5 τ +ΩzIzT
+Hzz

Table 9.3: Toggling frame Hamiltonians H̃(ti) during each event of the APCP cycle {τ−
180X̄−2τ−180X−τ}.
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Event Time H̃(ti) for APCPMG

U1 τ +ΩzIzT
−Hzz

P2 tp +Ωz(IzT
Cθ−IxT

Sθ)− 1
2
Hyy+HS

yC2θ+HA
y S2θ

U3 2τ −ΩzIzT
+Hzz

P4 tp −Ωz(IzT
Cθ+IxT

Sθ)− 1
2
Hyy+HS

yC2θ+HA
y S2θ

U5 τ +ΩzIzT
+Hzz

Table 9.4: Toggling frame Hamiltonians H̃(ti) during each event of the APCPMG cycle
{τ−180Ȳ −2τ−180Y −τ}.

For comparison, the toggling Hamiltonians for the CP sequence are provided in Table

9.2, the APCP sequence in Table 9.3, and the APCPMG sequence in Table 9.4. The differ-

ence between the alternating phase sequences and their counterparts can be obtained with

a proper sign change in specific terms during the first pulse. The toggling frame Hamilto-

nians for APCPMG differs from CPMG by the signs of Sθ and S2θ in event P2. Similarly,

CP differs from APCP also by the signs of Sθ and S2θ in event P2.

The time-dependent terms of the toggling frame Hamiltonians during the pulses are of

key interest in this analysis. The cosine and sine terms depend directly on the strength of

the rf field ω1. It is tempting to assume the limit ω1 →∞ and tp → 0, which would make

these time-dependent terms under the pulses negligible. After all, most experiments in this

study are conducted using very strong pulses. However, by keeping these small terms, we

find that they have a large impact over many pulses.

The toggling frame Hamiltonians from Table 9.1 are fed into Eq. (9.8) to yield the

leading order behavior for the CPMG sequence [45]. This approach is repeated for all four

pulse sequences giving the zeroth-order average Hamiltonians

H̄(0)
CP =

1

tc
(4τHzz − tpHxx) (9.12)

H̄(0)
CPMG =

1

tc
(4τHzz − tpHyy) (9.13)

H̄(0)
APCP =

1

tc
(4τHzz − tpHxx +

4Ωztp
π

IyT
) (9.14)

H̄(0)
APCPMG =

1

tc
(4τHzz − tpHyy −

4Ωz

π
tpIxT

) (9.15)



CHAPTER 9. AVERAGE HAMILTONIAN THEORY FOR FINITE PULSES 90

with the following first order corrections

H̄(1)
CP =

+i

2tc~
tp
π

(
tp[HA

x ,HS
x +Hxx]

+(8τ+2tp)[ΩzIyT
,ΩzIzT

+Hxx]
)

(9.16)

H̄(1)
CPMG =

−i
2tc~

tp
π

(
tp[HA

y ,HS
y +Hyy]

+(8τ+2tp)[ΩzIxT
,ΩzIzT

+Hyy]
)

(9.17)

H̄(1)
APCP = 0 (9.18)

H̄(1)
APCPMG = 0 (9.19)

where we define

Hxx =
N∑

j=1

N∑
k>j

Bjk(3Ixj
Ixk

− ~Ij · ~Ik) (9.20)

Hyy =
N∑

j=1

N∑
k>j

Bjk(3Iyj
Iyk

− ~Ij · ~Ik) (9.21)

HA
x =

3

2

N∑
j=1

N∑
k>j

Bjk(Iyj
Izk

+ Izj
Iyk

) (9.22)

HA
y =

3

2

N∑
j=1

N∑
k>j

Bjk(Ixj
Izk

+ Izj
Ixk

) (9.23)

HS
x =

3

2

N∑
j=1

N∑
k>j

Bjk(Izj
Izk

− Iyj
Iyk

) (9.24)

HS
y =

3

2

N∑
j=1

N∑
k>j

Bjk(Izj
Izk

− Ixj
Ixk

). (9.25)

Inspection of these expressions leads to several important conclusions. First, the average

Hamiltonian expressions for all four pulse sequences reduce to the bare dipolarHamiltonian

Hzz in the limit when tp → 0. The first order correction terms H̄(1) vanish in that limit

since they are all proportional to tp. While the instantaneous pulse approximation leads to

an identical decay for all four pulse sequences, real pulses introduce dynamics unique to

each sequence.

Second, all the first-order correction terms H̄(1) are strictly due to the commonly ne-
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glected time-dependent terms under the pulse. Though the prefactor is small, these first-

order terms provide important contributions to the time-evolution of quantum coherences.

Third, by symmetry, the alternating phase sequences APCP and APCPMGhave no odd-

order Average Hamiltonian terms. Some sequences were designed to exploit such symme-

tries in an effort to eliminate the first few Average Hamiltonian terms and thus reduce de-

cay. However, in experiments and in simulations, we observe a long-lived coherence in the

APCP sequence but a fast decay in the APCPMG sequence.

Fourth, the Average Hamiltonian expressions for the CP sequence are isomorphic to

the CPMG sequence under the transformation (x, y) 7→ (y,−x). The same transformation

applies tomapping the APCP sequence to the APCPMG sequence. Also, forΩz = 0, H̄(0)
CP ≡

H̄(0)
APCP and H̄(0)

CPMG ≡ H̄(0)
APCPMG leaving only a difference in the first order correction

terms. Despite these similarities, all four pulse sequences produce very different results in

experiments (Figure 4.4) and in simulations (Figure 8.3).

Fifth and finally, the alternating phase sequences APCP and APCPMG have another

distinct difference from CP and CPMG at the level ofH(0). In equations (9.14) and (9.15) a

single spin operator appears that is proportional to both the Zeeman shift Ωz and the pulse

duration tp.

9.2 Second Averaging

Though the average Hamiltonian expressions [Eqs. (9.12)-(9.19)] are all different, it is

not obvious how they produce the very distinct expectation values 〈Iy(t)〉 in Figure 8.3. In

order to gain insight into the mechanisms that produce these results, we rewrite the average

Hamiltonian expressions using second averaging [26, 55, 63].

Equations (9.14) and (9.15) each contain a single spin operator term (e.g. 4Ωztp
π
IyT

in

H̄(0)
APCP) that looks like a transverse field coupled to the spins. Since H̄(0) is time-independent,

we treat this effective transverse field as a continuous field H̄rf even though it only origi-

nates from the pulses. Applying average Hamiltonian theory in this second toggling frame
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yields

¯̄H
(0)

APCP = − 1

tc
(2τ − tp

2
)Hyy (9.26)

¯̄H
(0)

APCPMG = − 1

tc
(2τ − tp

2
)Hxx. (9.27)

These leading order second-averaged Hamiltonians differ only in the direction of a sin-

gle anisotropic dipolar Hamiltonian term. The direction for both Hxx and Hyy were dic-

tated by the effective transverse field H̄rf . The effect that these anisotropic dipolar Hamil-

tonians have on the measurable coherence depends on the initial density matrix. For this

paper, we set ρ(0) = IyT
. From the commutation relations, we note that ¯̄H

(0)

APCP pre-

serves IyT
, since [IyT

,Hyy] = 0, while ¯̄H
(0)

APCPMG does not, since [IyT
,Hxx] 6= 0. There-

fore, this second-averaging analysis predicts that APCPwill have long-lived coherencewhile

APCPMG should rapidly decay towards zero.

However, only considering Eqs. (9.26) and (9.27) would be a mistake since higher

order corrections in this second averaged Magnus expansion are non-negligible. Strictly

truncating the second averaged Hamiltonian to Eqs. (9.26) and (9.27) is only a good ap-

proximation when Ωztp � Bjktc. In contrast, our experiments are typically in the regime

where Ωztp is comparable to Bjktc. Still, our experimental results show long-lived coher-

ence in APCP, suggesting that the higher-order corrections do not induce decay.

Because a similar difference exists between the CP and CPMG pulse sequences, we wish

to apply the idea of second averaging to their average Hamiltonian expressions as well.

However, because equations (9.12) and (9.13) do not have similar effective transverse fields,

we must look to their first order correction terms.

For CPMG, the first order term H̄(1)
CPMG [Eq. (9.17)] contains a single spin operator pro-

portional to Ω2
zIyT

from the commutator [IxT
, IzT

]. Similarly, H̄(1)
CP [Eq. (9.16)] contains

a term proportional to Ω2
zIxT

. These single spin terms are analogous to the effective trans-

verse fields that produced ¯̄H
(0)

APCP and ¯̄H
(0)

APCPMG. Thus, this analysis predicts long-lived

coherence in CPMG and a fast decay in CP, at least for large Ωz (Figure 8.3).

However, in experiments, we observed a long tail in CPMG even for very small Ωz.

This experimental result inspired us to re-examine H̄(1)
CPMG for another single spin operator.
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Figure 9.1: Calculations for the CPMG pulse sequence with N = 4, 2τ = 2 µs, tp = 12.5
µs, 25×Bjk of 29Si in silicon, and an average over 400 DRs. Exact calculations with Ωz/h
drawn from a 3 kHz wide Gaussian for each DR (purple curve) and Ωz = 0 (red curve).
Average Hamiltonian calculations H̄(0)

CPMG + H̄(1)
CPMG with Ωz/h drawn from a 3 kHz wide

Gaussian for each DR (teal curve) and Ωz = 0 (blue curve). Approximate calculation with
H̄(0)

CPMG + F̄ (1)
CPMG for Ωz = 0 (green curve). Zeroth order average Hamiltonian H̄(0)

CPMG

(black curve).
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Evaluating equation (9.17) for Ωz = 0 gives

H̄(1)
CPMG|Ωz=0 =

−i
2tc~

t2p
π

[HA
y ,HS

y +Hyy]. (9.28)

There are many multi-spin operators in this expression but the only single-spin operator

left in equation (9.28) is

F̄ (1)
CPMG ≡ −

9t2p
16πtc~

N∑
j=1

N∑
k>j

B2
jk(Iyj

+ Iyk
). (9.29)

Although this term is indeed a single spin operator, it is not proportional to the total spin

operator IyT
. Nevertheless, the effect of F̄ (1)

CPMG on H̄(0)
CPMG can be examined by calculating

the time-evolution of 〈Iy1(t)〉 using only H̄
(0)
CPMG + F̄ (1)

CPMG [Figure 9.2(green curve)].

For comparison, Figure 9.2 plots exact calculations and average Hamiltonian calcula-

tions for the CPMG sequence. Without any additions, H̄(0)
CPMG [Figure 9.2(black curve)]

decays to zero. Using the average Hamiltonian H̄(0)
CPMG + H̄(1)

CPMG to time-evolve the expec-

tation value 〈Iy(t)〉 yields a long-tail in good agreement with the exact calculation for the

case where Ωz/h is drawn from a 3 kHz wide Gaussian for each DR [Figure 9.2(teal curve

compared to purple curve)].

Even for the case ofΩz = 0 the averageHamiltonian H̄(0)
CPMG+H̄(1)

CPMG [Figure 9.2(blue)]

is still in good agreement with the exact calculation [Figure 9.2(red)]. These curves show

that the long-tail in CPMG can exist in the absence of theΩ2
zIyT

term. Surprisingly, we also

find that H̄(0)
CPMG + F̄ (1)

CPMG [Figure 9.2(green curve)] fits together with these two curves

despite the terms that were neglected. However, these neglected terms also contribute to a

tail in calculations of H̄(0)
CPMG + H̄(1)

CPMG − F̄
(1)
CPMG. Furthermore, multi-spin terms play an

even bigger role in systems with stronger coupling or a larger number of spins.

The emphasis of this section was to highlight the influence of a few important terms in

the average Hamiltonian [equations (9.12)-(9.19)]. Focussing on only a few terms allows

us to understand the qualitative results in calculations of 〈Iy1(t)〉. The exact calculation con-
tains more physics. As we shall show in Chapter 9, the qualitative similarities pointed out

in the second-averaging of APCP and CPMG, for example, do not give a complete picture

of the evolution of ρ(t).
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Figure 9.2: Calculations of the time evolution of 〈Iy(t)〉 under H̄(0)
CPMG + H̄(1)

CPMG [Eqs.
(9.13) and (9.17)] with different coupling strengths as multiples of Bjk for 29Si in Silicon
(Bjk × 1 produces a dipolar linewidth of 90 Hz). Parameters: N = 4 spins, ΩZ = 0,
H1 = 40 kHz, 2τ = 2 µs, 1000 DR average. Exact calculations produce similar curves for
these parameters.

9.3 Reconciling Simulations with Experiments

Wenow address the two important caveats that wemade for the exact calculations of Figure

8.3. Namely, we included only a small number of spins in our exact calculation and inflated

the dipolar coupling strength slightly above the experimental values in order to accentu-

ate the contributions of the time-dependent terms under the pulses. For simplicity, this

discussion considers only the CPMG pulse sequence with Ωz = 0.

Figure 9.3 shows a set of calculations of 〈Iy(t)〉 evolved under H̄(0)
CPMG + H̄(1)

CPMG for

different dipolar coupling strengths. For weak dipolar coupling strengths (Bjk×1 of 29Si in
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Figure 9.3: Exact calculations of the CPMG pulse sequence show that the tail height of the
measurable coherence increases with system size (even N are compared to avoid artifacts
[95]). Parameters: ΩZ = 0, H1 = 40 kHz, 2τ = 2 µs, 400 DR average (100 DR average
for N=8).

Silicon), the measured coherence decays to zero in agreement with the delta-function pulse

approximation (see Chapter 5). AsBjk increases, the initial decay rate increases, consistent

with the dipolar linewidth [1, 47, 79, 89, 11]. For large Bjk, this initial decay is followed by

a long tail that increases with dipolar coupling strength.

Figure 9.3 shows a different set of calculations where the CPMG tail height increases

with system size. In this case, the coupling strength is fixed at 25 times that of 29Si, while

each exact calculation considers a different number of spins N . By keeping Bjk fixed, the

initial decay is very similar for the three system sizes shown. However, after some time, the

effect of many strong but finite π pulses appears to produce a long-lived tail in themeasured
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Figure 9.4: Exact calculations changing both dipolar coupling strength and system size. By
addingmore spins, the dipolar coupling strength can be reduced to yield a similar tail height
in CPMG. Parameters: Ωz = 0,H1 = 40 kHz, 2τ = 2 µs, 400 DR average.

coherence that depends onN .

Since the CPMG tail height is sensitive to both the dipolar coupling strength and the

system size, we performed a comparative calculation in an attempt to extrapolate the results

of Figure 8.3 towards a systemwith largeN andweakBjk (as in silicon). Figure 9.3 shows a

pair of calculations whereN is increasedwhileBjk is decreased. TheN = 4 spin calculation

uses a dipolar coupling strength 25 times stronger than that of silicon, while theN = 6 spin

calculation uses a reduced dipolar coupling strength of 25/
√

6 times that of silicon. We

reduced the dipolar coupling strength by the ratio of the system sizes [27, 52, 55] ‖IzT
‖ =√

Tr{I2
zT
} =

√
N2(N−2) in order to keep ‖Hzz‖ constant between the two calculations.

The relative agreement in the calculated CPMG tail height supports the notion that small
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systems of strongly coupling spins share similarities with large systems of weakly coupled

spins.

These scaling calculations show that the total dipolar energy of the system, which in-

creases with system size, is an important parameter in finite π pulse effects. It is unknown

whether a saturation would occur at some largeN or how strong the pulses need to be in a

real system so that the delta-function pulse approximation can safely be invoked.

9.4 Choices for the Set of Dipolar Coupling Strengths

In Chapter 5, Section 5.4, the method for calculating the expectation value 〈Iy〉 forN spins

on a lattice was described. In all the exact and averageHamiltonian calculations shown since

Chapter 8, we have used the silicon lattice as a model and as a qualitative comparison to the

real data fromChapters 4, 6, and 7. Additionally, the calculations selected theN spins based

on their dipolar coupling strength to the spin at the origin. In other words, some spins that

appear on the lattice are ignored if the coupling constant to the origin B1k is weaker than

the rest.

Thismethod for selecting the set ofN spins depends on the form of the dipolar coupling

expression

Bjk ≡
1

2

γ2~2

|~rjk|3
(1− 3 cos2 θjk) (9.30)

where γ is the gyromagnetic ratio, ~rjk is the position vector between spins j and k, and θjk

satisfies ~rjk · ~Bext = |~rjk|| ~Bext| cos(θjk) defined for an externally applied magnetic field
~Bext parallel to ẑ. Spins too far from the origin couple weakly since Bjk falls as 1/|~rjk|3.
Also, spins oriented close to the magic angle have small coupling to the origin since at the

magic angle (1− 3 cos2 θjk) = 0.

Originally, this method of selecting which spins to include in the calculation was chosen

in order to enhance the influence of the coupling on the central spin since we calculate 〈Iy1〉.
The disadvantage of this method of picking by coupling strength is the artificial discrimina-

tion of spins in a cone about the magic angle. Those excluded spins could otherwise couple

strongly to their neighbors and thus indirectly affect the central spin. By excluding these

spins, we may not be representing a naturally random set of spins on a lattice. Therefore,
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Figure 9.5: Three ways to choose theN = 6 spins for calculations: In all graphs red curves
show calculations where spins are selected by their distance to the origin on a silicon lattice,
blue curves show calculations were spins are selected based on their coupling strength to
the origin on a silicon lattice, and black curves show calculations where the coupling con-
stants are selected from a random Lorentzian distribution of coupling constants that match
those on the disorder averaged silicon lattice. Top left graph shows the calculated FID. Top
right graph shows the calculated spectrum. Bottom graph shows an average Hamiltonian
calculation of H̄(0)

CPMG + H̄(1)
CPMG where tp = 12.5 µs, 2τ = 2 µs, and the coupling strength

is 25× that of 29Si in silicon.
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presented here are two other methods of selecting the set ofN spins and their effects on the

calculations.

The first alternative builds the proper lattice as before but sorts the lattice sites by their

distance from the origin in a list. Then the lattice is randomly populated according to its

natural abundance (in the case of silicon it is 4.67% n.a.). The firstN populated spins in the

list are included in the calculation, thus producing a small cluster ofN spins in proximity to

the origin. The advantage of this method is that it creates a more spherical cluster of spins.

Additionally, by including the possibility of weak coupling constants, this method is more

representative of the actual set of couplings that may be found in a natural cluster of spins.

However, this method is still greatly limited by the small number N < 10 spins that we

are computationally able to handle. Spins just outside the border of the cluster are excluded

even though their contribution to 〈Iy1〉may be just as significant as those spins within the

cluster.

The second alternative method eliminates the step of building a lattice altogether and

instead randomly selectsN coupling constants from a Lorentzian distribution that matches

the disorder averaged distribution of coupling constants on the real lattice. The advantage

of this method is that all possible coupling strengths are represented with their appropriate

likelihood, with weak couplings being more likely than strong couplings. This feature can

also be considered a disadvantage since in any single set of coupling constants, there is no

proximity relationship between spins. In this case there is no origin spin and the set of

coupling strengths might not be physically realizable.

The three methods for selecting the N spins are used in Figure 9.5 to calculate the free

induction decay (FID), the Fourier transformed spectrum, and the CPMG tail. As the figure

shows, the FID and the spectrum are qualitatively identical. In all three methods, the set

of strong couplings appear to dominate the early time behavior. However in the CPMG

average Hamiltonian calculation, the differences that show up in the set of weak couplings

actually manifest in small changes in the shape of the CPMG tail.

None of thesemethods produce qualitatively different results, i.e. the long-lived tail still

appears with a flat slope and roughly the same height for the given parameters. Still, the

sensitivity of the calculations on the choice of the couplings appears to be consistent with the

notion that the dynamics of all the spins contribute to the surprising observable coherence.
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In the next chapter we discuss how coherence transfer pathways that depend on the set of

coupling strengths and the number of spins may dynamically lead to the observed effects.



Chapter 10

Hidden Order in the Density Matrix

The multiple-pulse experiments and calculations presented thus far have been concerned

with the disorder-averaged expectation value 〈Iy1(t)〉 = Tr{ρ(t)Iy1}. We can gain more

insight into the full quantum dynamics of the spin system by visualizing the time-evolution

of ρ(t), both for a single disorder realization (DR), and for an average over many DRs.

10.1 Visualizing the Dynamic Density Matrix

For an N = 6 spin system, ρ(t) is a 26 × 26 matrix [18, 79] of complex numbers z = reiθ

that is difficult to present in compact form. Since the initial state of the system following

the 90X pulse is ρ(0) = IyT
, we found it convenient to visualize the state of ρ(t) using a

red-white-blue color scale to represent the phase angle θ of each cell in ρ(t). Any cells that

have magnitudes r < 1/10 of the largest initial magnitudes are colored black.

We start with the calculation for the case of CPMG with delta-function π pulses as we

have outlined in Chapter 4. By setting the Zeeman spread Ωz = 0, the evolution of ρ(t) is

caused by the dipolar Hamiltonian alone.

Figures 10.1 & 10.2 show the calculated disorder averaged expectation value 〈Iy(t)〉 for
N = 6 spins coupled by the truncated Ising Hamiltonian (Figure 10.1)

HIsing =
N∑

j=1

N∑
k>j

2BjkIzj
Izk

(10.1)

102
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Figure 10.1: Dipolar decay of 〈Iy1(t)〉with snapshots of the z-basis density matrix evolving
in time under the Ising Hamiltonian. Parameters: N = 6, ρ(0) = IyT

, Ωz = 0, tp = 12.2
µs, 2τ = 2 µs, 25×Bjk of 29Si in silicon, andBjk = 0 during pulses. The phase is colored
on a red-white-blue color scale (inset). Cells are set to black if their magnitude is less than
1/10 of the largest initially filled cells. In a single disorder realization (DR) the initial phase
coherence is lost after many pulses using HIsing. After an average over 150 DRs, the initial
state has decayed.
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or by the secular dipolar Hamiltonian (Figure 10.2)

Hzz =
N∑

j=1

N∑
k>j

2Bjk

[
Izj
Izk

− 1

4
(I+

j I
−
k + I−j I

+
k )

]
(10.2)

along with snapshots of the corresponding density matrix for each case.

In a single disorder realization (DR), the final density matrix under HIsing looks very

similar to the initial density matrix, however the phase of each nonzero element has been

scrambled from its initial phase. The scrambled phase in a single DR translates to a decay

of the magnitude in the average over 150 DRs and thus also the decay of 〈Iy1(t)〉.
The secular dipolar Hamiltonian also scrambles the phase of the density matrix as it

evolves in time. In a single DR,Hzz also spreads coherence to additional cells in the density

matrix. The mechanism responsible for the spreading of coherence in this case are the flip-

flop terms of Hzz. These terms allow the transitions between spin-states that conserve z-

angular momentum. Both the flip-flop terms and the initial density matrix proportional to

IyT
dictate the possible cells that can be reached after time-evolution [18, 79, 11]. Through

both the scrambling of the phase and the spread of coherence, the evolution of the density

matrix for delta-function pulses leads to decay in the disorder average.

For finite pulses, the evolution of the density matrix can be very different. Figures 10.3,

10.4, 10.5, and 10.6 show the density matrix as it evolves under the four pulse sequences

CP : 90X−τ−{180X−2τ−180X−2τ}n

APCP : 90X−τ−{180X̄−2τ−180X−2τ}n

CPMG : 90X−τ−{180Y −2τ−180Y −2τ}n

APCPMG : 90X−τ−{180Ȳ −2τ−180Y −2τ}n

where the internal Hamiltonian is present during the strong but finite pulses. In contrast

to the delta-function pulse approximation, these pulse sequences allow much more coher-

ence transfer to different cells of the density matrix. In particular, for the CP and CPMG

sequences, the spread of coherence has reached every single cell of the 26×26 density matrix

after evolving under 300 strong but finite π pulses.
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Figure 10.2: Dipolar decay of 〈Iy1(t)〉with snapshots of the z-basis density matrix evolving
in time under the secular dipolar Hamiltonian. Parameters: N = 6, ρ(0) = IyT

, Ωz = 0,
tp = 12.2 µs, 2τ = 2 µs, 25×Bjk of 29Si in silicon, andBjk = 0 during pulses. The phase
is colored on a red-white-blue color scale (inset). Cells are set to black if their magnitude
is less than 1/10 of the largest initially filled cells. In a single disorder realization (DR) the
initial phase coherence is lost after many pulses using usingHzz, which spreads coherence
to other parts of the density matrix and mixes their phase. After an average over 150 DRs,
the initial state has decayed.
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Figure 10.3: Snapshots of the Density Matrix with Finite Pulses Under CP. Expectation
value 〈Iy1(t)〉 and the density matrix ρ(t) as they evolve under The Carr-Purcell multiple
π pulse sequence with N = 6, Ωz drawn from a 3 kHz wide Gaussian, 25 × Bjk of 29Si
in silicon, H1 = 40 kHz, 2τ = 2 µs. The phase is colored on a red-white-blue color scale
(inset). Cells with negligible magnitude are colored black. Compare the single DR density
matrix snapshots with those of Figures 10.1 & 10.2. Much more coherence is spread about
the density matrix in these exact calculations, yet the disorder average can yield long-lived
coherence (CPMG and APCP) as well as fast decay (CP and APCPMG).
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Figure 10.4: Snapshots of the DensityMatrix with Finite Pulses Under CPMG. Expectation
value 〈Iy1(t)〉 and the density matrix ρ(t) as they evolve under the Carr-Purcell-Meiboom-
Gill multiple π pulse sequence withN = 6,Ωz drawn from a 3 kHzwide Gaussian, 25×Bjk

of 29Si in silicon,H1 = 40 kHz, 2τ = 2 µs. The phase is colored on a red-white-blue color
scale (inset). Cells with negligible magnitude are colored black. Compare the single DR
density matrix snapshots with those of Figures 10.1 & 10.2. Much more coherence is spread
about the density matrix in these exact calculations, yet the disorder average can yield long-
lived coherence (CPMG and APCP) as well as fast decay (CP and APCPMG).
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Figure 10.5: Snapshots of the Density Matrix with Finite Pulses Under APCP. Expectation
value 〈Iy1(t)〉 and the density matrix ρ(t) as they evolve under the Alternating-Phase Carr-
Purcell multiple π pulse sequence with N = 6, Ωz drawn from a 3 kHz wide Gaussian,
25× Bjk of 29Si in silicon,H1 = 40 kHz, 2τ = 2 µs. The phase is colored on a red-white-
blue color scale (inset). Cells with negligible magnitude are colored black. Compare the
single DRdensitymatrix snapshots with those of Figures 10.1 & 10.2. Muchmore coherence
is spread about the density matrix in these exact calculations, yet the disorder average can
yield long-lived coherence (CPMG and APCP) as well as fast decay (CP and APCPMG).
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Figure 10.6: Snapshots of the Density Matrix with Finite Pulses Under APCPMG. Expec-
tation value 〈Iy1(t)〉 and the density matrix ρ(t) as they evolve under the Alternating-Phase
Carr-Purcell-Meiboom-Gill multiple π pulse sequence withN = 6,Ωz drawn from a 3 kHz
wide Gaussian, 25× Bjk of 29Si in silicon,H1 = 40 kHz, 2τ = 2 µs. The phase is colored
on a red-white-blue color scale (inset). Cells with negligible magnitude are colored black.
Compare the single DR density matrix snapshots with those of Figures 10.1 & 10.2. Much
more coherence is spread about the density matrix in these exact calculations, yet the dis-
order average can yield long-lived coherence (CPMG and APCP) as well as fast decay (CP
and APCPMG).
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10.2 QuantumCoherenceTransfer Pathways and the “Knock-
Out” Sequence

The average Hamiltonian expressions for the four pulse sequences give us a better under-

standing of the mechanism of coherence flow to other cells of the density matrix for the case

of finite pulses. For example, the APCP sequence has a zeroth order Average Hamiltonian

H(0)
APCP =

N∑
j=1

N∑
k>j

Bjk

[
κ1Izj

Izk
+ κ2(I

+
j I

−
k + I−j I

+
k )

+κ3(I
+
j I

+
k + I−j I

−
k )

]
+ κ4(I

+
j − I−j ) (10.3)

when expressed using the raising and lowering operators. Here, κ1 = 8τ+tp
tc

, κ2 = 4τ+tp
4tc

,

κ3 = −3tp
4tc

, κ4 = −i2Ωztp
πtc

. The last two terms in equation (10.3) do not appear in theHamil-

tonian under the delta-function pulse approximation [equation (10.2)]. Furthermore, these

terms are distinct because they do not conserve z-angular momentum. The appearance of

these novel terms is yet another intrinsic property of the finite pulse. Regardless of how

well real pulses are engineered to reduce tp, unless tp is exactly zero, these extra terms will

enable the spread of coherence to parts of the density matrix fundamentally forbidden in

the delta-function pulse approximation. Thus, after the application of many π pulses, the

final densitymatrix will be nowhere near the expected result, if we fail to consider the action

of real pulses.

The significance of our argument for NMRwould be lost if these extra coherence trans-

fer pathways only led to an imperceptible difference in the decay of 〈Iy1(t)〉. However, as

Figures 10.3, 10.4, 10.5, and 10.6 show, the enhanced spread of coherence in a single DR can

surprisingly preserve the measurable coherence (CPMG and APCP) or lead to decay (CP

and APCPMG) in the disorder average depending on the phase of the π pulses. Thus, it is

of considerable importance to understand the entire densitymatrix since real pulses connect

all cells back to the measurable channel.

To illustrate the influence of these new coherence transfer pathways [18] to the mea-

surable cells, we performed a “knockout" calculation [16] that periodically zeroes cells in

the density matrix that should always be zero under the secular dipolar Hamiltonian and

delta-function π pulses [i.e. cells that remain black in Figure 10.2 after 2400 pulses in 1
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Figure 10.7: Knockout calculations for CPMG. Parameters: N=6, 150 × Bjk of 29Si in
silicon, Ωz = 0, H1 = 40 kHz, 2τ = 2 µs, and 400 DR average. The “knockout" trace
(purple), is calculated by deleting density matrix cells with quantum coherence order q 6=
±1 after each π pulse. (The delta-function pulse approximation assumes all coherence stays
as q = ±1 for all time.) The long tail in the exactCPMGcalculation (red) requires coherence
transfer pathways between all quantum coherences [18, 79, 16].
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DR]. The red curve in Figure 10.7 is the disorder averaged 〈Iy1(t)〉 for the CPMG sequence

with a long-lived tail. The purple curve is the same CPMG pulse sequence but applies the

“knockout" procedure after each π pulse and in each DR. Because of the drastic decay of the

“knockout" curve, we infer that not only do these extra coherence transfer pathways exist,

but they allow coherence to constructively flow back to the measurable channel leading to

the long tail in the CPMG sequence.

These “knockout” calculations were performed by Yanqun Dong. I am grateful to her

for allowing me to present them in my thesis.



Chapter 11

Advanced Finite Pulse Sequences

Understanding the underlying causes for the observed finite pulse effects not only enables

the identification of quantum coherence transfer pathways but also the manipulation of

coherences. In this chapter, we present two advanced pulse sequences based on the the

alternating phase pulse sequences described in earlier chapters.

11.1 The Super Hahn Echo

The rapid signal decay in the APCPMG sequence is roughly understood as being caused by

the analogous term in the average Hamiltonian that keeps APCP from decaying. The zeroth

order average Hamiltonian for APCPMG is

H̄(0)
APCPMG =

1

tc
(4τHzz − tpHyy −

4Ωz

π
tpIxT

). (11.1)

The last term in equation (11.1) acts to dephase any signal that builds up along Iy since it

can be interpreted as a constant field along x̂.

In comparison, the full Hamiltonian in the absence of pulses is

H =
N∑

i=1

ΩzIz +Hzz. (11.2)

As we have described in Chapter 5, the Zeeman part of the Hamiltonian may cause an initial

free induction decay due to the spread of Zeeman energies Ωz. However, a properly timed

π pulse can refocus this spread of Zeeman energies into a Hahn spin echo.

Just as we applied π pulses to refocus the Zeeman energy spread into echoes, we can try

to apply π pulses to refocus the loss of signal due to the Ix term in equation (11.1). Note

113
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Figure 11.1: NMR data for 13C nuclei in C60 at room temperature in a 12 Tesla field. Top
graph shows the decaying APCPMG echo train (brown) compared to the long-lived tail
in CPMG (red). Middle graph applies one additional π pulse along ŷ among the many π
pulses already applied in APCPMG. Themeasurable coherence returns in an echo of echoes.
Bottom graph shows the application of 12 additional π pulses to give an echo train of Super
Hahn Echoes.
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that a π pulse along x̂ would do nothing to change the sign of Ix, while a π pulse along ŷ

changes

− 4Ωz

π
tpIxT

→ +
4Ωz

π
tpIxT

. (11.3)

Alternatively, the phase of the π pulses in the APCPMG sequence can be inverted to give

the same result. That is, the two sequences

APCPMG : 90X − {τ − 180Ȳ − 2τ − 180Y − τ}

flip− APCPMG : 90X − {τ − 180Y − 2τ − 180Ȳ − τ}

differ in their zeroth order average Hamiltonian for the period within the brackets {} just
in the sign of−4Ωz

π
tpIxT

for APCPMG and +4Ωz

π
tpIxT

for flip-APCPMG.

In either case, changing the sign of the dephasing term should produce a time reversal of

its effects fromone period to the next. Figure 11.1 showsNMRdata taken byRonaG.Ramos

of 13C in C60 where the APCPMG sequence is applied with and without the additional π

pulse. The measurable coherence is refocused in the APCPMG echo train. We call this echo

of echoes the Super Hahn Echo.

Super Hahn Echo : 90X−{τ−180Ȳ −2τ−180Y −τ}m180Y {τ−180Ȳ −2τ−180Y −τ}n

Super Hahn Echo′ : 90X−{τ−180Ȳ −2τ−180Y −τ}m{τ−180Y −2τ−180Ȳ −τ}n

In the above two sequences the peak of the SuperHahnEchonominally occurswhenm = n.

The first sequence uses an additional 180Y pulse between two brackets of APCPMG while

the second sequence only changes the second bracket {} to flip-APCPMG.

More than one additional π pulsemay be applied during the APCPMG sequence to yield

a super echo train as shown in Figure 11.1(bottom). Or, to achieve the same effect, one could

alternate between blocks of APCPMG and flip-APCPMG sequences.

If we assume delta-function π pulses, then either of these sequences would yield the

same decay curve as calculated in Chapter 5. Though we use strong π pulses compared to

the spread of Zeeman energies, their finite time duration plays a very crucial role.
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11.2 The Super Magic Echo

The total average Hamiltonian during a long continuous pulse along ŷ is

H̄ = −1

2
Hyy (11.4)

because the oscillating non-secular terms average away in time. The Lee-Goldburg exper-

iment [41] exploits the minus sign in this Hamiltonian to refocus the decay caused by the

dipolar HamiltonianHzz.

The special trick is to change Hyy into Hzz in equation (11.4). This transformation is

achieved by applying twoX-phase π/2 pulses around the long continuous θY pulse.

Magic Echo : 90X̄θY 90X

Written in operator form, this sequence is

ρ(t) = P90X
PθY

P90X̄
ρ(0){inv} (11.5)

≈ exp(−iπ
2
Ix) exp(− i

~
H̄t) exp(+i

π

2
Ix)ρ(0){inv} (11.6)

≈ exp
[
− i

~
(−1

2
Hzz)t

]
ρ(0){inv} (11.7)

where {inv} is the inverse of the operators to the left of ρ(0). We have assume that the

90 degree pulses are delta functions for simplicity and have used the average Hamiltonian

form in equation (11.4) for the action during the θY pulse.

After this set of pulses, the spin system would continue to evolve under the dipolar

Hamiltonian as

ρ(t+ t′) ≈ Uzz(t
′) exp

[
− i

~
(−1

2
Hzz)t

]
ρ(0){inv} (11.8)

≈ exp
[
− i

~
(+Hzz)t

′
]
exp

[
− i

~
(−1

2
Hzz)t

]
ρ(0){inv}. (11.9)

Then, if t′ = 1
2
t the dipolar evolution of the density matrix is canceled and returns to the

initial density matrix

ρ(3t/2) ≈ ρ(0). (11.10)

To compensate for the additional presence of the Zeeman HamiltonianHZ one can period-

ically reverse the phase during the θY pulse.



CHAPTER 11. ADVANCED FINITE PULSE SEQUENCES 117

This Magic Echo sequence works very well in applications to dipolar systems but re-

quires a long continuous pulse θY to force the effective average Hamiltonian to reduce to

−1
2
Hyy. From our understanding of the average Hamiltonian for finite multiple π pulse se-

quences, we can perform an analogous experiment to the Magic Echo but with short strong

π pulses separated by time delays.

In Chapter 9, we introduced the notion of second averaging for the APCP sequence

about the effective transverse field in the zeroth average Hamiltonian term

H̄(0)
APCP =

1

tc
(4τHzz − tpHxx +

4Ωztp
π

IyT
) (11.11)

to yield
¯̄H

(0)

APCP = − 1

tc
(2τ − tp

2
)Hyy. (11.12)

Equation (11.12) is reminiscent of equation (11.4) but the overall sign depends onparameters

τ and tp, the interpulse spacing and the pulse duration respectively. The cycle time tc =

4τ + 2tp acts as an overall scaling factor. By controlling these two parameters, we are able

to change the timing when the dipolar evolution is cancelled.

In order to achieve a strong second averaging, a large Zeeman spread Ωz or a deliberate

off-resonance field should be introduced during the APCP sequence. Similarly to theMagic

Echo, we define the Super Magic Echo sequence

Super Magic Echo : 90X̄

{
90X − [τ − 180X̄ − 2τ − 180X − τ ]n

}
90X

where the subsequence in red brackets {} is the APCP sequence with n cycles and set op-

tionally off-resonance. By noticing that the first two pulses are of opposite phase with no

time delay between them, we can simplify the sequence by dropping both pulses

Super Magic Echo′ :
{

[τ − 180X̄ − 2τ − 180X − τ ]n
}

90X .

If we assume the delta-function pulse approximation, the Super Magic Echo′ sequence

acting on a system of spins initially aligned along ẑ at equilibrium should only produce an

FID immediately after the 90X pulse. In the delta-function pulse approximation, applying

a set of π pulses to spins aligned along ẑ should do nothing.

Simulations of the Super Magic Echo proved that the concepts were correct. However,

when performing the SME sequence on 1H nuclei in Adamantane, successful experimen-

tal results were initially not as easily obtained. The span of experimental parameters for
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Figure 11.2: NMR data for 13C nuclei in C60 at room temperature in a 12 Tesla field. Data
is acquired after the last pulse in the sequence. Top graph shows the Super Magic Echo′

sequence but with a 90X̄ pulse at the end instead of the proper 90X pulse. No echo or FID
forms. Middle graph shows the Super Magic Echo for the proper 90X pulse. The timing
of the Super Magic Echo depends on τ and tp of the APCP burst. Bottom graph shows the
Super Magic Echo′′ sequence where the previous 90X is replaced by 90X̄ − tf1 − 180Y .
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this sequence included sensitive timing parameters during the burst like τ , tp, and tburst

as well as the off-resonance offset amount. In practice, only a small range of values led to

the formation of the Super Magic Echo. These parameters were first successfully achieved

in simulation and subsequently applied in experiment. From the simulations, we learned

that the offset resonance frequency could not exceed approximately 25% of theH1 strength

or the average Hamiltonian expressions would require more higher order corrections that

would spoil the formation of the Super Magic Echo.

Figure 11.2 shows NMR data by Rona G. Ramos where this sequence is applied to 13C

nuclei in C60. The formation of the Super Magic Echo depends on τ and tp during the

APCP burst period as well as the phase of the final 90 degree pulse, which validates our

understanding of the average Hamiltonian for multiple finite π pulses. The data in C60 was

not as sensitive to the resonance frequency and did not require any offset to form the Super

Magic Echo. We attribute this difference of the C60 sample to the larger spread of Zeeman

energies found in C60 compared to its weaker dipolar coupling strength between 13C nuclei.

In contrast, Adamantane has a naturally smaller spread of Zeeman energies compared to the

much stronger dipolar coupling strength between 1H nuclei.

An additional improvement on the Super Magic Echo′ sequence attempts to refocus the

Zeeman Hamiltonian HZ at the same time as the dipolar Hamiltonian Hzz to produce an

even larger echo in the data (Figure 11.2)

Super Magic Echo′′ :
{

[τ − 180X̄ − 2τ − 180X − τ ]n
}

90X̄ − tf1 − 180Y .

The choice of the opposite phase for the 90 degree pulse stalls the refocussing of the Zeeman

Hamiltonian for a time tf1 after the 180Y pulse much like the usual Hahn Echo. The delay

time tf1 is chosen to match the time that the dipolar Hamiltonian is refocused.

For a perfect second averaging of the APCP sequence to equation (11.12), the dipolar

Hamiltonian should refocus at a time

1

tc
(2τ − tp

2
)tburst (11.13)

after the 90 degree pulse where tburst = ntc is the total time of the APCP burst. How-

ever, in practice, the timing is slightly shifted due to higher order corrections and possible

experimental artifacts [67].
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In principle, the Super Magic Echo could be formed using any of the four pulse se-

quences we have previously described in place of the APCP burst.

SME− CP :
{

[τ − 180X − 2τ − 180X − τ ]n
}

90Y

SME− APCP :
{

[τ − 180X̄ − 2τ − 180X − τ ]n
}

90X

SME− CPMG :
{

[τ − 180Y − 2τ − 180Y − τ ]n
}

90X

SME− APCPMG :
{

[τ − 180Ȳ − 2τ − 180Y − τ ]n
}

90Y .

Simulation of these sequences is shown in Figure 11.3. For τ → 0, the SME-CP and the

SME-CPMG simplify to the Lee-Goldberg Magic Echo. Although all four of these effects

are observed in simulations, they have yet to be experimentally observed, particularly SME-

CP and SME-CPMG [16, 67] .
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Figure 11.3: Simulations of the Super Magic Echo for the four pulse sequences CP, CPMG,
APCP, and APCPMG. The spin system is initially set at equilibrium ρ(0) = IzT

/(2N−2) at
t = 0. For 0 < t < 1 ms, a burst of π pulses is applied with pulse spacing TE=2τ and
pulse duration tp as given in each legend. The burst time is simulated using the average
Hamiltonian for that sequence H̄(0) + H̄(1). Immediately following the burst, a π/2 pulse
is applied with a special phase to convertHxx → Hzz for CP and APCPMG orHyy → Hzz

for CPMG and APCP. After a delay that depends on tp, τ , and Ωz in the burst, the Super
Magic Echo is formed. In each graph red is 〈Ix〉, green is 〈Iy〉, blue is

√
〈Ix〉2 + 〈Iy〉2, and

black is 〈Iz〉.



Chapter 12

Implications for Quantum Computation

Pulse action is crucial formany fields of study such as nuclearmagnetic resonance (NMR),

electron spin resonance (ESR), magnetic resonance imaging (MRI), and quantum infor-

mation processing (QIP). In these fields, approximating a real pulse as a delta-function

with infinite amplitude and infinitesimal duration is a common practice when the pulses

are much stronger than the spectral width of the system under study [79, 1, 55, 18, 28, 22].

Delta-function π pulses, in particular, play a key role in bang-bang control, [93] an impor-

tant technique designed to isolate qubits from their environments [88, 59, 8, 19, 90].

In real experiments, all pulses are finite in amplitude and have nonzero duration. Nev-

ertheless, for pulse sequences with a large number of π/2 pulses, [62, 64] such as in NMR

line-narrowing sequences [28, 51, 55, 69, 70, 68, 98], using the delta-function pulse approx-

imation yields qualitatively correct predictions. Furthermore, a more rigorous analysis that

includes finite pulse effects only introduces relatively small quantitative corrections [55].

For this reason, reports [45, 14, 21, 39, 48, 97] of finite pulse effects in dipolar solids in-

cluding 29Si in silicon, 13C in C60, 89Y in Y2O3, and electrons in Si:P are surprising. In all

of these studies, multiple high-powered π pulses much stronger than both the spread of

Zeeman energies and the dipolar coupling were used, yet the delta-function pulse approxi-

mation failed to predict the observed behavior. The missing key ingredient is the action of

time-dependent terms during the real π pulse.

We have shown experimental evidence of pulse sensitivity in dipolar solids for a variety

of samples and experimental conditions. We find that the spin system is intrinsically sensi-

tive to the phase and presence of real finite pulses even when these pulses are much stronger
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Figure 12.1: Calculations for APCP with N = 4, Ωz drawn from a 290 Hz wide Gaus-
sian, 1 × Bjk of 29Si in silicon, H1 = 1.5 MHz, 2τ = 2 µs, and 100 DR average. Even
for H1/FWHM = 5000, the delta-function pulse approximation (black) misses important
physics from the exact calculation (green).

than the spectral linewidth. Furthermore, exact calculations show this pulse sequence sen-

sitivity in small clusters of spins with large coupling strength. We suggest that our findings

should apply to large numbers of spins with weaker coupling based on a phenomenological

scaling of our exact results. The results of the exact calculation and average Hamiltonian

analysis show that no extrinsic effects are needed to describe the phenomena.

Conventional expectations from NMR theory suggest that the delta-function pulse ap-

proximation is applicable when the pulse is much stronger than the spread of Zeeman en-

ergies (ω1 � Ωz) and much stronger than the coupling strength (ω1 � Bjk). However,

we have conclusively shown that the delta-function pulse approximation misses important
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physics for any real pulse in the presence of an always-on internal Hamiltonian. These ef-

fects are especially pronounced when considering the action of π pulses since the unique

pulse-dependent terms have no analog in the delta-function pulse approximation [45].

Simply ignoring the intrinsic effects under real finite pulses can lead to dramatic conse-

quences as shown in Figure 12. The green trace shows the exact calculation of 〈Iy1(t)〉 for the
APCP sequence under the action of finite pulses. The black trace is the same calculation but

where we have artificially set the internal Hamiltonian to zero during the pulses. It is partic-

ularly alarming to note that we have used a pulse strength that is 5000 times stronger than

the full-width-at-half-maximum of the NMR spectrum, yet the two curves do not agree.

The delta-function pulse approximation is therefore a completely invalid assumption, at

least in the limit of many spins, many π pulses, or both.

Our findings have an important connection to the field of quantum information pro-

cessing since many quantum algorithms call for the application of repeated π pulses to a

quantum system [88, 59, 8, 19, 90, 93]. Typically, the delta-function pulse approximation

is used in the analysis. In order to salvage these schemes, the internal Hamiltonian must be

completely set to zero during the action of any real pulse. It is not enough to simply reduce

the coupling strength even by an order of magnitude. Furthermore, any effective transverse

field during the pulses will also change the system’s expected response after many pulses are

applied. The effects of real pulses need to be taken into account if the promise of quantum

control is to be realized.
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